FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm

Detalhes bibliográficos
Autor(a) principal: MacIel, R.
Data de Publicação: 2020
Outros Autores: Moreno, R. L., Pimenta, T. C., Rizol, P. M.S.R. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ICM50269.2020.9331498
http://hdl.handle.net/11449/205852
Resumo: The Interval Type-2 Fuzzy Logic Systems-IT2FLS processors have been widely used in control processes that analyzes uncertain information. The IT2FLS presents a superior performance compared to other methods for high uncertainty applications. In real-time control applications, circuit parallelism strategies increase the number of Fuzzy Logic Inference Per Second (FLIPS). This technique demands more hardware resources compared to sequential processing, which can make it difficult to use platforms that have resource limitations. This article presents an IT2FLS architecture implementation minimizes the use of parallel processing in the implementation in the inference engine and maintains the amount of FLIPS suitable for real-time applications. The proposed IT2FLS architecture is implemented in FPGA. It uses the type reduction circuits based on Nie-Tan algorithm. The hardware consists of two 8-bit inputs with four Gaussian membership functions for each one, sixteen rules and an 8-bit output with seven membership functions. The results of the FPGA implementation are compared with the same architecture implemented in Matlab® using the Toolbox for type-2 fuzzy.
id UNSP_a0ad801b402a992148acd9688aded65f
oai_identifier_str oai:repositorio.unesp.br:11449/205852
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan AlgorithmFPGAInterval Type-2 Fuzzy SystemNie-Tan algorithmsThe Interval Type-2 Fuzzy Logic Systems-IT2FLS processors have been widely used in control processes that analyzes uncertain information. The IT2FLS presents a superior performance compared to other methods for high uncertainty applications. In real-time control applications, circuit parallelism strategies increase the number of Fuzzy Logic Inference Per Second (FLIPS). This technique demands more hardware resources compared to sequential processing, which can make it difficult to use platforms that have resource limitations. This article presents an IT2FLS architecture implementation minimizes the use of parallel processing in the implementation in the inference engine and maintains the amount of FLIPS suitable for real-time applications. The proposed IT2FLS architecture is implemented in FPGA. It uses the type reduction circuits based on Nie-Tan algorithm. The hardware consists of two 8-bit inputs with four Gaussian membership functions for each one, sixteen rules and an 8-bit output with seven membership functions. The results of the FPGA implementation are compared with the same architecture implemented in Matlab® using the Toolbox for type-2 fuzzy.Universidade Federal de Itajuba-UNIFEISão Paulo State University-UNESP FegSão Paulo State University-UNESP FegUniversidade Federal de Itajuba-UNIFEIUniversidade Estadual Paulista (Unesp)MacIel, R.Moreno, R. L.Pimenta, T. C.Rizol, P. M.S.R. [UNESP]2021-06-25T10:22:19Z2021-06-25T10:22:19Z2020-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ICM50269.2020.9331498Proceedings of the International Conference on Microelectronics, ICM, v. 2020-December.http://hdl.handle.net/11449/20585210.1109/ICM50269.2020.93314982-s2.0-85100576843Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Conference on Microelectronics, ICMinfo:eu-repo/semantics/openAccess2021-10-22T18:56:45Zoai:repositorio.unesp.br:11449/205852Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:13:28.578439Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
title FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
spellingShingle FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
MacIel, R.
FPGA
Interval Type-2 Fuzzy System
Nie-Tan algorithms
title_short FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
title_full FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
title_fullStr FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
title_full_unstemmed FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
title_sort FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
author MacIel, R.
author_facet MacIel, R.
Moreno, R. L.
Pimenta, T. C.
Rizol, P. M.S.R. [UNESP]
author_role author
author2 Moreno, R. L.
Pimenta, T. C.
Rizol, P. M.S.R. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Itajuba-UNIFEI
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv MacIel, R.
Moreno, R. L.
Pimenta, T. C.
Rizol, P. M.S.R. [UNESP]
dc.subject.por.fl_str_mv FPGA
Interval Type-2 Fuzzy System
Nie-Tan algorithms
topic FPGA
Interval Type-2 Fuzzy System
Nie-Tan algorithms
description The Interval Type-2 Fuzzy Logic Systems-IT2FLS processors have been widely used in control processes that analyzes uncertain information. The IT2FLS presents a superior performance compared to other methods for high uncertainty applications. In real-time control applications, circuit parallelism strategies increase the number of Fuzzy Logic Inference Per Second (FLIPS). This technique demands more hardware resources compared to sequential processing, which can make it difficult to use platforms that have resource limitations. This article presents an IT2FLS architecture implementation minimizes the use of parallel processing in the implementation in the inference engine and maintains the amount of FLIPS suitable for real-time applications. The proposed IT2FLS architecture is implemented in FPGA. It uses the type reduction circuits based on Nie-Tan algorithm. The hardware consists of two 8-bit inputs with four Gaussian membership functions for each one, sixteen rules and an 8-bit output with seven membership functions. The results of the FPGA implementation are compared with the same architecture implemented in Matlab® using the Toolbox for type-2 fuzzy.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-14
2021-06-25T10:22:19Z
2021-06-25T10:22:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ICM50269.2020.9331498
Proceedings of the International Conference on Microelectronics, ICM, v. 2020-December.
http://hdl.handle.net/11449/205852
10.1109/ICM50269.2020.9331498
2-s2.0-85100576843
url http://dx.doi.org/10.1109/ICM50269.2020.9331498
http://hdl.handle.net/11449/205852
identifier_str_mv Proceedings of the International Conference on Microelectronics, ICM, v. 2020-December.
10.1109/ICM50269.2020.9331498
2-s2.0-85100576843
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the International Conference on Microelectronics, ICM
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129405983129600