FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ICM50269.2020.9331498 http://hdl.handle.net/11449/205852 |
Resumo: | The Interval Type-2 Fuzzy Logic Systems-IT2FLS processors have been widely used in control processes that analyzes uncertain information. The IT2FLS presents a superior performance compared to other methods for high uncertainty applications. In real-time control applications, circuit parallelism strategies increase the number of Fuzzy Logic Inference Per Second (FLIPS). This technique demands more hardware resources compared to sequential processing, which can make it difficult to use platforms that have resource limitations. This article presents an IT2FLS architecture implementation minimizes the use of parallel processing in the implementation in the inference engine and maintains the amount of FLIPS suitable for real-time applications. The proposed IT2FLS architecture is implemented in FPGA. It uses the type reduction circuits based on Nie-Tan algorithm. The hardware consists of two 8-bit inputs with four Gaussian membership functions for each one, sixteen rules and an 8-bit output with seven membership functions. The results of the FPGA implementation are compared with the same architecture implemented in Matlab® using the Toolbox for type-2 fuzzy. |
id |
UNSP_a0ad801b402a992148acd9688aded65f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/205852 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan AlgorithmFPGAInterval Type-2 Fuzzy SystemNie-Tan algorithmsThe Interval Type-2 Fuzzy Logic Systems-IT2FLS processors have been widely used in control processes that analyzes uncertain information. The IT2FLS presents a superior performance compared to other methods for high uncertainty applications. In real-time control applications, circuit parallelism strategies increase the number of Fuzzy Logic Inference Per Second (FLIPS). This technique demands more hardware resources compared to sequential processing, which can make it difficult to use platforms that have resource limitations. This article presents an IT2FLS architecture implementation minimizes the use of parallel processing in the implementation in the inference engine and maintains the amount of FLIPS suitable for real-time applications. The proposed IT2FLS architecture is implemented in FPGA. It uses the type reduction circuits based on Nie-Tan algorithm. The hardware consists of two 8-bit inputs with four Gaussian membership functions for each one, sixteen rules and an 8-bit output with seven membership functions. The results of the FPGA implementation are compared with the same architecture implemented in Matlab® using the Toolbox for type-2 fuzzy.Universidade Federal de Itajuba-UNIFEISão Paulo State University-UNESP FegSão Paulo State University-UNESP FegUniversidade Federal de Itajuba-UNIFEIUniversidade Estadual Paulista (Unesp)MacIel, R.Moreno, R. L.Pimenta, T. C.Rizol, P. M.S.R. [UNESP]2021-06-25T10:22:19Z2021-06-25T10:22:19Z2020-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ICM50269.2020.9331498Proceedings of the International Conference on Microelectronics, ICM, v. 2020-December.http://hdl.handle.net/11449/20585210.1109/ICM50269.2020.93314982-s2.0-85100576843Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Conference on Microelectronics, ICMinfo:eu-repo/semantics/openAccess2021-10-22T18:56:45Zoai:repositorio.unesp.br:11449/205852Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:13:28.578439Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm |
title |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm |
spellingShingle |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm MacIel, R. FPGA Interval Type-2 Fuzzy System Nie-Tan algorithms |
title_short |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm |
title_full |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm |
title_fullStr |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm |
title_full_unstemmed |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm |
title_sort |
FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm |
author |
MacIel, R. |
author_facet |
MacIel, R. Moreno, R. L. Pimenta, T. C. Rizol, P. M.S.R. [UNESP] |
author_role |
author |
author2 |
Moreno, R. L. Pimenta, T. C. Rizol, P. M.S.R. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Itajuba-UNIFEI Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
MacIel, R. Moreno, R. L. Pimenta, T. C. Rizol, P. M.S.R. [UNESP] |
dc.subject.por.fl_str_mv |
FPGA Interval Type-2 Fuzzy System Nie-Tan algorithms |
topic |
FPGA Interval Type-2 Fuzzy System Nie-Tan algorithms |
description |
The Interval Type-2 Fuzzy Logic Systems-IT2FLS processors have been widely used in control processes that analyzes uncertain information. The IT2FLS presents a superior performance compared to other methods for high uncertainty applications. In real-time control applications, circuit parallelism strategies increase the number of Fuzzy Logic Inference Per Second (FLIPS). This technique demands more hardware resources compared to sequential processing, which can make it difficult to use platforms that have resource limitations. This article presents an IT2FLS architecture implementation minimizes the use of parallel processing in the implementation in the inference engine and maintains the amount of FLIPS suitable for real-time applications. The proposed IT2FLS architecture is implemented in FPGA. It uses the type reduction circuits based on Nie-Tan algorithm. The hardware consists of two 8-bit inputs with four Gaussian membership functions for each one, sixteen rules and an 8-bit output with seven membership functions. The results of the FPGA implementation are compared with the same architecture implemented in Matlab® using the Toolbox for type-2 fuzzy. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-14 2021-06-25T10:22:19Z 2021-06-25T10:22:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ICM50269.2020.9331498 Proceedings of the International Conference on Microelectronics, ICM, v. 2020-December. http://hdl.handle.net/11449/205852 10.1109/ICM50269.2020.9331498 2-s2.0-85100576843 |
url |
http://dx.doi.org/10.1109/ICM50269.2020.9331498 http://hdl.handle.net/11449/205852 |
identifier_str_mv |
Proceedings of the International Conference on Microelectronics, ICM, v. 2020-December. 10.1109/ICM50269.2020.9331498 2-s2.0-85100576843 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the International Conference on Microelectronics, ICM |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129405983129600 |