An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-030-75425-9_8 http://hdl.handle.net/11449/229893 |
Resumo: | This paper deals with sequences of monic polynomials { Φn(μk;z)}n≥0, k = 0, 1, orthogonal with respect to two nontrivial Borel measures μk, k = 0, 1, supported on the unit circle, satisfying (formula presented) n ≥ 3, where bn ≠ 0. We find examples of pairs of measures (μ0, μ1) for which this property holds. The analysis of polynomials orthogonal with respect to the Sobolev inner product associated with the pair of measures (μ0, μ1) is presented. Some properties concerning their connection coefficients are given. |
id |
UNSP_96f3644b37c715cdd7a0701336182f20 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/229893 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit CircleCoherent pairs of measures of the second kindHessenberg matricesOrthogonal polynomials on the unit circleProbability measures on the unit circleSobolev inner products on the unit circleThis paper deals with sequences of monic polynomials { Φn(μk;z)}n≥0, k = 0, 1, orthogonal with respect to two nontrivial Borel measures μk, k = 0, 1, supported on the unit circle, satisfying (formula presented) n ≥ 3, where bn ≠ 0. We find examples of pairs of measures (μ0, μ1) for which this property holds. The analysis of polynomials orthogonal with respect to the Sobolev inner product associated with the pair of measures (μ0, μ1) is presented. Some properties concerning their connection coefficients are given.Universidad Carlos III de MadridDepartamento de Física y Matemáticas Universidad de MonterreyDepartamento de Matemáticas Universidad Carlos III de MadridDepartamento de Matemática IBILCE UNESP – Universidade Estadual PaulistaDepartamento de Matemática IBILCE UNESP – Universidade Estadual PaulistaUniversidad de MonterreyUniversidad Carlos III de MadridUniversidade Estadual Paulista (UNESP)Garza, Lino G.Marcellán, F.Ranga, A. Sri [UNESP]2022-04-29T08:36:23Z2022-04-29T08:36:23Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart113-142http://dx.doi.org/10.1007/978-3-030-75425-9_8Operator Theory: Advances and Applications, v. 285, p. 113-142.2296-48780255-0156http://hdl.handle.net/11449/22989310.1007/978-3-030-75425-9_82-s2.0-85119148227Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengOperator Theory: Advances and Applicationsinfo:eu-repo/semantics/openAccess2022-04-29T08:36:23Zoai:repositorio.unesp.br:11449/229893Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:10:22.371017Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle |
title |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle |
spellingShingle |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle Garza, Lino G. Coherent pairs of measures of the second kind Hessenberg matrices Orthogonal polynomials on the unit circle Probability measures on the unit circle Sobolev inner products on the unit circle |
title_short |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle |
title_full |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle |
title_fullStr |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle |
title_full_unstemmed |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle |
title_sort |
An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle |
author |
Garza, Lino G. |
author_facet |
Garza, Lino G. Marcellán, F. Ranga, A. Sri [UNESP] |
author_role |
author |
author2 |
Marcellán, F. Ranga, A. Sri [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidad de Monterrey Universidad Carlos III de Madrid Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Garza, Lino G. Marcellán, F. Ranga, A. Sri [UNESP] |
dc.subject.por.fl_str_mv |
Coherent pairs of measures of the second kind Hessenberg matrices Orthogonal polynomials on the unit circle Probability measures on the unit circle Sobolev inner products on the unit circle |
topic |
Coherent pairs of measures of the second kind Hessenberg matrices Orthogonal polynomials on the unit circle Probability measures on the unit circle Sobolev inner products on the unit circle |
description |
This paper deals with sequences of monic polynomials { Φn(μk;z)}n≥0, k = 0, 1, orthogonal with respect to two nontrivial Borel measures μk, k = 0, 1, supported on the unit circle, satisfying (formula presented) n ≥ 3, where bn ≠ 0. We find examples of pairs of measures (μ0, μ1) for which this property holds. The analysis of polynomials orthogonal with respect to the Sobolev inner product associated with the pair of measures (μ0, μ1) is presented. Some properties concerning their connection coefficients are given. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-04-29T08:36:23Z 2022-04-29T08:36:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-030-75425-9_8 Operator Theory: Advances and Applications, v. 285, p. 113-142. 2296-4878 0255-0156 http://hdl.handle.net/11449/229893 10.1007/978-3-030-75425-9_8 2-s2.0-85119148227 |
url |
http://dx.doi.org/10.1007/978-3-030-75425-9_8 http://hdl.handle.net/11449/229893 |
identifier_str_mv |
Operator Theory: Advances and Applications, v. 285, p. 113-142. 2296-4878 0255-0156 10.1007/978-3-030-75425-9_8 2-s2.0-85119148227 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Operator Theory: Advances and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
113-142 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129399679090688 |