Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/191999 |
Resumo: | Nesta dissertação consideramos algumas propriedades dinâmicas para o rotor pul- sado descrito por um mapa bidimensional dissipativo descontínuo, nas variáveis de ação e ângulo e parametrizado por dois parâmetros de controle, k ≥ 0 controlando a intensidade da não linearidade e γ ∈ [0, 1] representando a dissipação. O caso de γ = 0 recupera o modelo não dissipativo, enquanto que para qualquer γ diferente de 0 acontece a quebra da preservação da área, levando, portanto, à existência de atratores, inclusive caóticos. Mostramos que a partir de um valor elevado da ação inicial, a dinâmica converge para atratores caóticos através de um decaimento exponencial no tempo, enquanto que a velocidade do decaimento depende da intensidade da dissipação. Investigamos os expoentes de Lyapunov positivos e descrevemos seu comportamento em função dos parâmetros de controle. Também aplicamos o formalismo de transporte através de um furo, introduzido no eixo de ação do espaço de fases, e verificamos que o histograma do escape de partículas cresce rapidamente até atingir um valor máximo e depois tende a zero para tempos longos. Os histogramas de escape mostram-se invariáveis em relação aos parâmetros de controle sujeitos a leis de potência não triviais. A probabilidade de sobrevivência das partículas em função do tempo também é medida para os atratores caóticos. |
id |
UNSP_a3b31584e0b2ee16fa69e51f4a9741f0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/191999 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuoChaotic transport properties in a dissipative discontinuous kicked rotatorCaos determinísticoComportamento caótico nos sistemasDinâmicaSistemas não linearesNesta dissertação consideramos algumas propriedades dinâmicas para o rotor pul- sado descrito por um mapa bidimensional dissipativo descontínuo, nas variáveis de ação e ângulo e parametrizado por dois parâmetros de controle, k ≥ 0 controlando a intensidade da não linearidade e γ ∈ [0, 1] representando a dissipação. O caso de γ = 0 recupera o modelo não dissipativo, enquanto que para qualquer γ diferente de 0 acontece a quebra da preservação da área, levando, portanto, à existência de atratores, inclusive caóticos. Mostramos que a partir de um valor elevado da ação inicial, a dinâmica converge para atratores caóticos através de um decaimento exponencial no tempo, enquanto que a velocidade do decaimento depende da intensidade da dissipação. Investigamos os expoentes de Lyapunov positivos e descrevemos seu comportamento em função dos parâmetros de controle. Também aplicamos o formalismo de transporte através de um furo, introduzido no eixo de ação do espaço de fases, e verificamos que o histograma do escape de partículas cresce rapidamente até atingir um valor máximo e depois tende a zero para tempos longos. Os histogramas de escape mostram-se invariáveis em relação aos parâmetros de controle sujeitos a leis de potência não triviais. A probabilidade de sobrevivência das partículas em função do tempo também é medida para os atratores caóticos.In this work we consider some dynamical properties for the kicked rotator described by a dissipative two-dimensional discontinuous mapping, in action and angle variables and parameterized by two control parameters, k ≥ 0 controlling the intensity of the nonlinearity and γ ∈ [0, 1] representing the dissipation. The case of γ = 0 recovers the nondissipative model, while for any γ different of 0 yields to the breaking of area preservation, hence leading to the existence of attractors, including chaotic attractors. We show that from a high value of the initial action, the dynamics converges to chaotic attractors through an exponential decay in time, while the speed of the decay depends on the intensity of the dissipation. We investigated the positive Lyapunov exponents and described their behavior according to the control parameters. We also applied the transport formalism through an hole, introduced in the action axis in the phase space, and verifying that the particle leak histogram grows rapidly until it reaches a maximum value and then decreases towards to zero for long times. The escape histograms are invariables in relation to the control parameters subject to non-trivial power-laws. The probability of particle survival over time is also measured for the chaotic attractors.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq: 03242/2018-3CNPq: 421254/2016-5CNPq: 311105/2015-7FAPESP: 2018/14685-9FAPESP: 2014/18672-8Universidade Estadual Paulista (Unesp)Oliveira, Juliano Antonio de [UNESP]Universidade Estadual Paulista (Unesp)Perre, Rodrigo Martins2020-03-26T17:06:23Z2020-03-26T17:06:23Z2020-02-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/19199900092984333004170002P2porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-06T14:38:27Zoai:repositorio.unesp.br:11449/191999Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T14:38:27Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo Chaotic transport properties in a dissipative discontinuous kicked rotator |
title |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo |
spellingShingle |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo Perre, Rodrigo Martins Caos determinístico Comportamento caótico nos sistemas Dinâmica Sistemas não lineares |
title_short |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo |
title_full |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo |
title_fullStr |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo |
title_full_unstemmed |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo |
title_sort |
Propriedades de transporte caótico em um rotor pulsado dissipativo descontínuo |
author |
Perre, Rodrigo Martins |
author_facet |
Perre, Rodrigo Martins |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira, Juliano Antonio de [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Perre, Rodrigo Martins |
dc.subject.por.fl_str_mv |
Caos determinístico Comportamento caótico nos sistemas Dinâmica Sistemas não lineares |
topic |
Caos determinístico Comportamento caótico nos sistemas Dinâmica Sistemas não lineares |
description |
Nesta dissertação consideramos algumas propriedades dinâmicas para o rotor pul- sado descrito por um mapa bidimensional dissipativo descontínuo, nas variáveis de ação e ângulo e parametrizado por dois parâmetros de controle, k ≥ 0 controlando a intensidade da não linearidade e γ ∈ [0, 1] representando a dissipação. O caso de γ = 0 recupera o modelo não dissipativo, enquanto que para qualquer γ diferente de 0 acontece a quebra da preservação da área, levando, portanto, à existência de atratores, inclusive caóticos. Mostramos que a partir de um valor elevado da ação inicial, a dinâmica converge para atratores caóticos através de um decaimento exponencial no tempo, enquanto que a velocidade do decaimento depende da intensidade da dissipação. Investigamos os expoentes de Lyapunov positivos e descrevemos seu comportamento em função dos parâmetros de controle. Também aplicamos o formalismo de transporte através de um furo, introduzido no eixo de ação do espaço de fases, e verificamos que o histograma do escape de partículas cresce rapidamente até atingir um valor máximo e depois tende a zero para tempos longos. Os histogramas de escape mostram-se invariáveis em relação aos parâmetros de controle sujeitos a leis de potência não triviais. A probabilidade de sobrevivência das partículas em função do tempo também é medida para os atratores caóticos. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-26T17:06:23Z 2020-03-26T17:06:23Z 2020-02-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/191999 000929843 33004170002P2 |
url |
http://hdl.handle.net/11449/191999 |
identifier_str_mv |
000929843 33004170002P2 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128102153322496 |