Micro-MetaStream: Algorithm selection for time-changing data

Detalhes bibliográficos
Autor(a) principal: Rossi, André Luis Debiaso [UNESP]
Data de Publicação: 2021
Outros Autores: Soares, Carlos, Souza, Bruno Feres de, Ponce de Leon Ferreira de Carvalho, André Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.ins.2021.02.075
http://hdl.handle.net/11449/207483
Resumo: Data stream mining needs to deal with scenarios where data distribution can change over time. As a result, different learning algorithms can be more suitable in different time periods. This paper proposes micro-MetaStream, a meta-learning based method to recommend the most suitable learning algorithm for each new example arriving in a data stream. It is an evolution of MetaStream, which recommends learning algorithms for batches of examples. By using a unitary granularity, micro-MetaStream is able to respond more efficiently to changes in data distribution than its predecessor. The meta-data combines meta-features, characteristics describing recent data, with base-level features, the original variables of the new example. In experiments on real-world regression data streams, micro-metaStream outperformed MetaStream and a baseline method at the meta-level and frequently improved the predictive performance at the base-level.
id UNSP_a4891a65dccd92595b33d4c1e2548f41
oai_identifier_str oai:repositorio.unesp.br:11449/207483
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Micro-MetaStream: Algorithm selection for time-changing dataAlgorithm selectionMeta-learningTime-changing dataData stream mining needs to deal with scenarios where data distribution can change over time. As a result, different learning algorithms can be more suitable in different time periods. This paper proposes micro-MetaStream, a meta-learning based method to recommend the most suitable learning algorithm for each new example arriving in a data stream. It is an evolution of MetaStream, which recommends learning algorithms for batches of examples. By using a unitary granularity, micro-MetaStream is able to respond more efficiently to changes in data distribution than its predecessor. The meta-data combines meta-features, characteristics describing recent data, with base-level features, the original variables of the new example. In experiments on real-world regression data streams, micro-metaStream outperformed MetaStream and a baseline method at the meta-level and frequently improved the predictive performance at the base-level.São Paulo State University (Unesp), Campus of ItapevaFraunhofer Portugal AICOS and LIAAD-INESC TEC Faculdade de Engenharia Universidade do PortoUniversidade Federal do Maranhão (UFMA)Instituto de Ciências Matemáticas e de Computação Universidade de São PauloSão Paulo State University (Unesp), Campus of ItapevaUniversidade Estadual Paulista (Unesp)Universidade do PortoUniversidade Federal do Maranhão (UFMA)Universidade de São Paulo (USP)Rossi, André Luis Debiaso [UNESP]Soares, CarlosSouza, Bruno Feres dePonce de Leon Ferreira de Carvalho, André Carlos2021-06-25T10:55:55Z2021-06-25T10:55:55Z2021-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article262-277http://dx.doi.org/10.1016/j.ins.2021.02.075Information Sciences, v. 565, p. 262-277.0020-0255http://hdl.handle.net/11449/20748310.1016/j.ins.2021.02.0752-s2.0-85102862542Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Sciencesinfo:eu-repo/semantics/openAccess2021-10-23T17:23:26Zoai:repositorio.unesp.br:11449/207483Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:11:47.961987Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Micro-MetaStream: Algorithm selection for time-changing data
title Micro-MetaStream: Algorithm selection for time-changing data
spellingShingle Micro-MetaStream: Algorithm selection for time-changing data
Rossi, André Luis Debiaso [UNESP]
Algorithm selection
Meta-learning
Time-changing data
title_short Micro-MetaStream: Algorithm selection for time-changing data
title_full Micro-MetaStream: Algorithm selection for time-changing data
title_fullStr Micro-MetaStream: Algorithm selection for time-changing data
title_full_unstemmed Micro-MetaStream: Algorithm selection for time-changing data
title_sort Micro-MetaStream: Algorithm selection for time-changing data
author Rossi, André Luis Debiaso [UNESP]
author_facet Rossi, André Luis Debiaso [UNESP]
Soares, Carlos
Souza, Bruno Feres de
Ponce de Leon Ferreira de Carvalho, André Carlos
author_role author
author2 Soares, Carlos
Souza, Bruno Feres de
Ponce de Leon Ferreira de Carvalho, André Carlos
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade do Porto
Universidade Federal do Maranhão (UFMA)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Rossi, André Luis Debiaso [UNESP]
Soares, Carlos
Souza, Bruno Feres de
Ponce de Leon Ferreira de Carvalho, André Carlos
dc.subject.por.fl_str_mv Algorithm selection
Meta-learning
Time-changing data
topic Algorithm selection
Meta-learning
Time-changing data
description Data stream mining needs to deal with scenarios where data distribution can change over time. As a result, different learning algorithms can be more suitable in different time periods. This paper proposes micro-MetaStream, a meta-learning based method to recommend the most suitable learning algorithm for each new example arriving in a data stream. It is an evolution of MetaStream, which recommends learning algorithms for batches of examples. By using a unitary granularity, micro-MetaStream is able to respond more efficiently to changes in data distribution than its predecessor. The meta-data combines meta-features, characteristics describing recent data, with base-level features, the original variables of the new example. In experiments on real-world regression data streams, micro-metaStream outperformed MetaStream and a baseline method at the meta-level and frequently improved the predictive performance at the base-level.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:55:55Z
2021-06-25T10:55:55Z
2021-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ins.2021.02.075
Information Sciences, v. 565, p. 262-277.
0020-0255
http://hdl.handle.net/11449/207483
10.1016/j.ins.2021.02.075
2-s2.0-85102862542
url http://dx.doi.org/10.1016/j.ins.2021.02.075
http://hdl.handle.net/11449/207483
identifier_str_mv Information Sciences, v. 565, p. 262-277.
0020-0255
10.1016/j.ins.2021.02.075
2-s2.0-85102862542
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Information Sciences
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 262-277
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129403495907328