Micro-MetaStream: Algorithm selection for time-changing data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.ins.2021.02.075 http://hdl.handle.net/11449/207483 |
Resumo: | Data stream mining needs to deal with scenarios where data distribution can change over time. As a result, different learning algorithms can be more suitable in different time periods. This paper proposes micro-MetaStream, a meta-learning based method to recommend the most suitable learning algorithm for each new example arriving in a data stream. It is an evolution of MetaStream, which recommends learning algorithms for batches of examples. By using a unitary granularity, micro-MetaStream is able to respond more efficiently to changes in data distribution than its predecessor. The meta-data combines meta-features, characteristics describing recent data, with base-level features, the original variables of the new example. In experiments on real-world regression data streams, micro-metaStream outperformed MetaStream and a baseline method at the meta-level and frequently improved the predictive performance at the base-level. |
id |
UNSP_a4891a65dccd92595b33d4c1e2548f41 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/207483 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Micro-MetaStream: Algorithm selection for time-changing dataAlgorithm selectionMeta-learningTime-changing dataData stream mining needs to deal with scenarios where data distribution can change over time. As a result, different learning algorithms can be more suitable in different time periods. This paper proposes micro-MetaStream, a meta-learning based method to recommend the most suitable learning algorithm for each new example arriving in a data stream. It is an evolution of MetaStream, which recommends learning algorithms for batches of examples. By using a unitary granularity, micro-MetaStream is able to respond more efficiently to changes in data distribution than its predecessor. The meta-data combines meta-features, characteristics describing recent data, with base-level features, the original variables of the new example. In experiments on real-world regression data streams, micro-metaStream outperformed MetaStream and a baseline method at the meta-level and frequently improved the predictive performance at the base-level.São Paulo State University (Unesp), Campus of ItapevaFraunhofer Portugal AICOS and LIAAD-INESC TEC Faculdade de Engenharia Universidade do PortoUniversidade Federal do Maranhão (UFMA)Instituto de Ciências Matemáticas e de Computação Universidade de São PauloSão Paulo State University (Unesp), Campus of ItapevaUniversidade Estadual Paulista (Unesp)Universidade do PortoUniversidade Federal do Maranhão (UFMA)Universidade de São Paulo (USP)Rossi, André Luis Debiaso [UNESP]Soares, CarlosSouza, Bruno Feres dePonce de Leon Ferreira de Carvalho, André Carlos2021-06-25T10:55:55Z2021-06-25T10:55:55Z2021-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article262-277http://dx.doi.org/10.1016/j.ins.2021.02.075Information Sciences, v. 565, p. 262-277.0020-0255http://hdl.handle.net/11449/20748310.1016/j.ins.2021.02.0752-s2.0-85102862542Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Sciencesinfo:eu-repo/semantics/openAccess2021-10-23T17:23:26Zoai:repositorio.unesp.br:11449/207483Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:11:47.961987Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Micro-MetaStream: Algorithm selection for time-changing data |
title |
Micro-MetaStream: Algorithm selection for time-changing data |
spellingShingle |
Micro-MetaStream: Algorithm selection for time-changing data Rossi, André Luis Debiaso [UNESP] Algorithm selection Meta-learning Time-changing data |
title_short |
Micro-MetaStream: Algorithm selection for time-changing data |
title_full |
Micro-MetaStream: Algorithm selection for time-changing data |
title_fullStr |
Micro-MetaStream: Algorithm selection for time-changing data |
title_full_unstemmed |
Micro-MetaStream: Algorithm selection for time-changing data |
title_sort |
Micro-MetaStream: Algorithm selection for time-changing data |
author |
Rossi, André Luis Debiaso [UNESP] |
author_facet |
Rossi, André Luis Debiaso [UNESP] Soares, Carlos Souza, Bruno Feres de Ponce de Leon Ferreira de Carvalho, André Carlos |
author_role |
author |
author2 |
Soares, Carlos Souza, Bruno Feres de Ponce de Leon Ferreira de Carvalho, André Carlos |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade do Porto Universidade Federal do Maranhão (UFMA) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Rossi, André Luis Debiaso [UNESP] Soares, Carlos Souza, Bruno Feres de Ponce de Leon Ferreira de Carvalho, André Carlos |
dc.subject.por.fl_str_mv |
Algorithm selection Meta-learning Time-changing data |
topic |
Algorithm selection Meta-learning Time-changing data |
description |
Data stream mining needs to deal with scenarios where data distribution can change over time. As a result, different learning algorithms can be more suitable in different time periods. This paper proposes micro-MetaStream, a meta-learning based method to recommend the most suitable learning algorithm for each new example arriving in a data stream. It is an evolution of MetaStream, which recommends learning algorithms for batches of examples. By using a unitary granularity, micro-MetaStream is able to respond more efficiently to changes in data distribution than its predecessor. The meta-data combines meta-features, characteristics describing recent data, with base-level features, the original variables of the new example. In experiments on real-world regression data streams, micro-metaStream outperformed MetaStream and a baseline method at the meta-level and frequently improved the predictive performance at the base-level. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:55:55Z 2021-06-25T10:55:55Z 2021-07-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.ins.2021.02.075 Information Sciences, v. 565, p. 262-277. 0020-0255 http://hdl.handle.net/11449/207483 10.1016/j.ins.2021.02.075 2-s2.0-85102862542 |
url |
http://dx.doi.org/10.1016/j.ins.2021.02.075 http://hdl.handle.net/11449/207483 |
identifier_str_mv |
Information Sciences, v. 565, p. 262-277. 0020-0255 10.1016/j.ins.2021.02.075 2-s2.0-85102862542 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Information Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
262-277 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129403495907328 |