Scaling properties for a family of discontinuous mappings

Detalhes bibliográficos
Autor(a) principal: Méndez-Bermúdez, J. A.
Data de Publicação: 2015
Outros Autores: De Oliveira, Juliano A. [UNESP], Aguilar-Sánchez, R., Leonel, Edson D. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.physa.2015.05.035
http://hdl.handle.net/11449/167921
Resumo: Scaling exponents that describe a transition from integrability to non-integrability in a family of two-dimensional, nonlinear, and discontinuous mappings are obtained. The mapping considered is parameterized by the exponent γ in the action variable. The scaling exponents describing the behavior of the average square action along the chaotic orbits are obtained for different values of γ; therefore classes of universality can be defined. For specific values of γ our mapping acts as the discontinuous-map representation of well-known nonlinear systems, thus making our study broadly applicable. Also, the formalism used is general and the procedure can be extended to characterize many other dynamical systems.
id UNSP_a4d90b0ea324f81cccc0194035df4eda
oai_identifier_str oai:repositorio.unesp.br:11449/167921
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Scaling properties for a family of discontinuous mappingsDiscontinuous functionNonlinear mapScaling lawsScaling exponents that describe a transition from integrability to non-integrability in a family of two-dimensional, nonlinear, and discontinuous mappings are obtained. The mapping considered is parameterized by the exponent γ in the action variable. The scaling exponents describing the behavior of the average square action along the chaotic orbits are obtained for different values of γ; therefore classes of universality can be defined. For specific values of γ our mapping acts as the discontinuous-map representation of well-known nonlinear systems, thus making our study broadly applicable. Also, the formalism used is general and the procedure can be extended to characterize many other dynamical systems.Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48UNESP - Univ Estadual Paulista, São João da Boa Vista, Câmpus São João da Boa VistaFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de PueblaDepartamento de Física, UNESP - Univ Estadual Paulista, Av. 24A, 1515 Bela VistaAbdus Salam International Center for Theoretical Physics, Strada Costiera 11UNESP - Univ Estadual Paulista, São João da Boa Vista, Câmpus São João da Boa VistaDepartamento de Física, UNESP - Univ Estadual Paulista, Av. 24A, 1515 Bela VistaInstituto de Física, Benemérita Universidad Autónoma de PueblaUniversidade Estadual Paulista (Unesp)Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de PueblaAbdus Salam International Center for Theoretical PhysicsMéndez-Bermúdez, J. A.De Oliveira, Juliano A. [UNESP]Aguilar-Sánchez, R.Leonel, Edson D. [UNESP]2018-12-11T16:38:52Z2018-12-11T16:38:52Z2015-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article943-951application/pdfhttp://dx.doi.org/10.1016/j.physa.2015.05.035Physica A: Statistical Mechanics and its Applications, v. 436, p. 943-951.0378-4371http://hdl.handle.net/11449/16792110.1016/j.physa.2015.05.0352-s2.0-849375967472-s2.0-84937596747.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A: Statistical Mechanics and its Applications0,773info:eu-repo/semantics/openAccess2023-12-29T06:19:38Zoai:repositorio.unesp.br:11449/167921Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:35:56.811882Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Scaling properties for a family of discontinuous mappings
title Scaling properties for a family of discontinuous mappings
spellingShingle Scaling properties for a family of discontinuous mappings
Méndez-Bermúdez, J. A.
Discontinuous function
Nonlinear map
Scaling laws
title_short Scaling properties for a family of discontinuous mappings
title_full Scaling properties for a family of discontinuous mappings
title_fullStr Scaling properties for a family of discontinuous mappings
title_full_unstemmed Scaling properties for a family of discontinuous mappings
title_sort Scaling properties for a family of discontinuous mappings
author Méndez-Bermúdez, J. A.
author_facet Méndez-Bermúdez, J. A.
De Oliveira, Juliano A. [UNESP]
Aguilar-Sánchez, R.
Leonel, Edson D. [UNESP]
author_role author
author2 De Oliveira, Juliano A. [UNESP]
Aguilar-Sánchez, R.
Leonel, Edson D. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Instituto de Física, Benemérita Universidad Autónoma de Puebla
Universidade Estadual Paulista (Unesp)
Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla
Abdus Salam International Center for Theoretical Physics
dc.contributor.author.fl_str_mv Méndez-Bermúdez, J. A.
De Oliveira, Juliano A. [UNESP]
Aguilar-Sánchez, R.
Leonel, Edson D. [UNESP]
dc.subject.por.fl_str_mv Discontinuous function
Nonlinear map
Scaling laws
topic Discontinuous function
Nonlinear map
Scaling laws
description Scaling exponents that describe a transition from integrability to non-integrability in a family of two-dimensional, nonlinear, and discontinuous mappings are obtained. The mapping considered is parameterized by the exponent γ in the action variable. The scaling exponents describing the behavior of the average square action along the chaotic orbits are obtained for different values of γ; therefore classes of universality can be defined. For specific values of γ our mapping acts as the discontinuous-map representation of well-known nonlinear systems, thus making our study broadly applicable. Also, the formalism used is general and the procedure can be extended to characterize many other dynamical systems.
publishDate 2015
dc.date.none.fl_str_mv 2015-07-21
2018-12-11T16:38:52Z
2018-12-11T16:38:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physa.2015.05.035
Physica A: Statistical Mechanics and its Applications, v. 436, p. 943-951.
0378-4371
http://hdl.handle.net/11449/167921
10.1016/j.physa.2015.05.035
2-s2.0-84937596747
2-s2.0-84937596747.pdf
url http://dx.doi.org/10.1016/j.physa.2015.05.035
http://hdl.handle.net/11449/167921
identifier_str_mv Physica A: Statistical Mechanics and its Applications, v. 436, p. 943-951.
0378-4371
10.1016/j.physa.2015.05.035
2-s2.0-84937596747
2-s2.0-84937596747.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physica A: Statistical Mechanics and its Applications
0,773
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 943-951
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128235680038912