Scaling properties for a family of discontinuous mappings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physa.2015.05.035 http://hdl.handle.net/11449/167921 |
Resumo: | Scaling exponents that describe a transition from integrability to non-integrability in a family of two-dimensional, nonlinear, and discontinuous mappings are obtained. The mapping considered is parameterized by the exponent γ in the action variable. The scaling exponents describing the behavior of the average square action along the chaotic orbits are obtained for different values of γ; therefore classes of universality can be defined. For specific values of γ our mapping acts as the discontinuous-map representation of well-known nonlinear systems, thus making our study broadly applicable. Also, the formalism used is general and the procedure can be extended to characterize many other dynamical systems. |
id |
UNSP_a4d90b0ea324f81cccc0194035df4eda |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/167921 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Scaling properties for a family of discontinuous mappingsDiscontinuous functionNonlinear mapScaling lawsScaling exponents that describe a transition from integrability to non-integrability in a family of two-dimensional, nonlinear, and discontinuous mappings are obtained. The mapping considered is parameterized by the exponent γ in the action variable. The scaling exponents describing the behavior of the average square action along the chaotic orbits are obtained for different values of γ; therefore classes of universality can be defined. For specific values of γ our mapping acts as the discontinuous-map representation of well-known nonlinear systems, thus making our study broadly applicable. Also, the formalism used is general and the procedure can be extended to characterize many other dynamical systems.Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48UNESP - Univ Estadual Paulista, São João da Boa Vista, Câmpus São João da Boa VistaFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de PueblaDepartamento de Física, UNESP - Univ Estadual Paulista, Av. 24A, 1515 Bela VistaAbdus Salam International Center for Theoretical Physics, Strada Costiera 11UNESP - Univ Estadual Paulista, São João da Boa Vista, Câmpus São João da Boa VistaDepartamento de Física, UNESP - Univ Estadual Paulista, Av. 24A, 1515 Bela VistaInstituto de Física, Benemérita Universidad Autónoma de PueblaUniversidade Estadual Paulista (Unesp)Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de PueblaAbdus Salam International Center for Theoretical PhysicsMéndez-Bermúdez, J. A.De Oliveira, Juliano A. [UNESP]Aguilar-Sánchez, R.Leonel, Edson D. [UNESP]2018-12-11T16:38:52Z2018-12-11T16:38:52Z2015-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article943-951application/pdfhttp://dx.doi.org/10.1016/j.physa.2015.05.035Physica A: Statistical Mechanics and its Applications, v. 436, p. 943-951.0378-4371http://hdl.handle.net/11449/16792110.1016/j.physa.2015.05.0352-s2.0-849375967472-s2.0-84937596747.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A: Statistical Mechanics and its Applications0,773info:eu-repo/semantics/openAccess2023-12-29T06:19:38Zoai:repositorio.unesp.br:11449/167921Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:35:56.811882Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Scaling properties for a family of discontinuous mappings |
title |
Scaling properties for a family of discontinuous mappings |
spellingShingle |
Scaling properties for a family of discontinuous mappings Méndez-Bermúdez, J. A. Discontinuous function Nonlinear map Scaling laws |
title_short |
Scaling properties for a family of discontinuous mappings |
title_full |
Scaling properties for a family of discontinuous mappings |
title_fullStr |
Scaling properties for a family of discontinuous mappings |
title_full_unstemmed |
Scaling properties for a family of discontinuous mappings |
title_sort |
Scaling properties for a family of discontinuous mappings |
author |
Méndez-Bermúdez, J. A. |
author_facet |
Méndez-Bermúdez, J. A. De Oliveira, Juliano A. [UNESP] Aguilar-Sánchez, R. Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
De Oliveira, Juliano A. [UNESP] Aguilar-Sánchez, R. Leonel, Edson D. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Instituto de Física, Benemérita Universidad Autónoma de Puebla Universidade Estadual Paulista (Unesp) Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla Abdus Salam International Center for Theoretical Physics |
dc.contributor.author.fl_str_mv |
Méndez-Bermúdez, J. A. De Oliveira, Juliano A. [UNESP] Aguilar-Sánchez, R. Leonel, Edson D. [UNESP] |
dc.subject.por.fl_str_mv |
Discontinuous function Nonlinear map Scaling laws |
topic |
Discontinuous function Nonlinear map Scaling laws |
description |
Scaling exponents that describe a transition from integrability to non-integrability in a family of two-dimensional, nonlinear, and discontinuous mappings are obtained. The mapping considered is parameterized by the exponent γ in the action variable. The scaling exponents describing the behavior of the average square action along the chaotic orbits are obtained for different values of γ; therefore classes of universality can be defined. For specific values of γ our mapping acts as the discontinuous-map representation of well-known nonlinear systems, thus making our study broadly applicable. Also, the formalism used is general and the procedure can be extended to characterize many other dynamical systems. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-21 2018-12-11T16:38:52Z 2018-12-11T16:38:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physa.2015.05.035 Physica A: Statistical Mechanics and its Applications, v. 436, p. 943-951. 0378-4371 http://hdl.handle.net/11449/167921 10.1016/j.physa.2015.05.035 2-s2.0-84937596747 2-s2.0-84937596747.pdf |
url |
http://dx.doi.org/10.1016/j.physa.2015.05.035 http://hdl.handle.net/11449/167921 |
identifier_str_mv |
Physica A: Statistical Mechanics and its Applications, v. 436, p. 943-951. 0378-4371 10.1016/j.physa.2015.05.035 2-s2.0-84937596747 2-s2.0-84937596747.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica A: Statistical Mechanics and its Applications 0,773 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
943-951 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128235680038912 |