Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations

Detalhes bibliográficos
Autor(a) principal: SILVA,E. M.
Data de Publicação: 2019
Outros Autores: SOUZA,W. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300429
Resumo: Abstract: Scaling symmetries arise in different branches of physics, and symmetry-based approaches are powerful tools for studying scaling-invariant models since they can provide conservation laws that are not obvious by inspection. In this framework, the class of variable-coefficients nonlinear dispersive equations vc K ( m , n ), which contains several important evolution equations modeling nonlinear phenomena, is considered. For some of its scaling-invariant subclasses, we study its nonlinear self-adjointness and construct eight new local conservation laws associated with scaling symmetries by using a general theorem on conservation laws and the multipliers method. The property of scale invariance of those equations led to five conservation laws with a direct physical interpretation: energy, center of mass, and mass are the conserved quantities obtained in some cases.
id SBMAC-1_c147f69fb4963a3fff686c4d760e0ee0
oai_identifier_str oai:scielo:S2179-84512019000300429
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equationsscaling symmetriesvariable-coefficientsnonlinear dispersive equationsnonlinear self-adjointnessconservation lawsAbstract: Scaling symmetries arise in different branches of physics, and symmetry-based approaches are powerful tools for studying scaling-invariant models since they can provide conservation laws that are not obvious by inspection. In this framework, the class of variable-coefficients nonlinear dispersive equations vc K ( m , n ), which contains several important evolution equations modeling nonlinear phenomena, is considered. For some of its scaling-invariant subclasses, we study its nonlinear self-adjointness and construct eight new local conservation laws associated with scaling symmetries by using a general theorem on conservation laws and the multipliers method. The property of scale invariance of those equations led to five conservation laws with a direct physical interpretation: energy, center of mass, and mass are the conserved quantities obtained in some cases.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300429TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.0429info:eu-repo/semantics/openAccessSILVA,E. M.SOUZA,W. L.eng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300429Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
title Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
spellingShingle Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
SILVA,E. M.
scaling symmetries
variable-coefficients
nonlinear dispersive equations
nonlinear self-adjointness
conservation laws
title_short Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
title_full Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
title_fullStr Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
title_full_unstemmed Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
title_sort Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
author SILVA,E. M.
author_facet SILVA,E. M.
SOUZA,W. L.
author_role author
author2 SOUZA,W. L.
author2_role author
dc.contributor.author.fl_str_mv SILVA,E. M.
SOUZA,W. L.
dc.subject.por.fl_str_mv scaling symmetries
variable-coefficients
nonlinear dispersive equations
nonlinear self-adjointness
conservation laws
topic scaling symmetries
variable-coefficients
nonlinear dispersive equations
nonlinear self-adjointness
conservation laws
description Abstract: Scaling symmetries arise in different branches of physics, and symmetry-based approaches are powerful tools for studying scaling-invariant models since they can provide conservation laws that are not obvious by inspection. In this framework, the class of variable-coefficients nonlinear dispersive equations vc K ( m , n ), which contains several important evolution equations modeling nonlinear phenomena, is considered. For some of its scaling-invariant subclasses, we study its nonlinear self-adjointness and construct eight new local conservation laws associated with scaling symmetries by using a general theorem on conservation laws and the multipliers method. The property of scale invariance of those equations led to five conservation laws with a direct physical interpretation: energy, center of mass, and mass are the conserved quantities obtained in some cases.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300429
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300429
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2019.020.03.0429
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.20 n.3 2019
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220621070336