Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300429 |
Resumo: | Abstract: Scaling symmetries arise in different branches of physics, and symmetry-based approaches are powerful tools for studying scaling-invariant models since they can provide conservation laws that are not obvious by inspection. In this framework, the class of variable-coefficients nonlinear dispersive equations vc K ( m , n ), which contains several important evolution equations modeling nonlinear phenomena, is considered. For some of its scaling-invariant subclasses, we study its nonlinear self-adjointness and construct eight new local conservation laws associated with scaling symmetries by using a general theorem on conservation laws and the multipliers method. The property of scale invariance of those equations led to five conservation laws with a direct physical interpretation: energy, center of mass, and mass are the conserved quantities obtained in some cases. |
id |
SBMAC-1_c147f69fb4963a3fff686c4d760e0ee0 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512019000300429 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equationsscaling symmetriesvariable-coefficientsnonlinear dispersive equationsnonlinear self-adjointnessconservation lawsAbstract: Scaling symmetries arise in different branches of physics, and symmetry-based approaches are powerful tools for studying scaling-invariant models since they can provide conservation laws that are not obvious by inspection. In this framework, the class of variable-coefficients nonlinear dispersive equations vc K ( m , n ), which contains several important evolution equations modeling nonlinear phenomena, is considered. For some of its scaling-invariant subclasses, we study its nonlinear self-adjointness and construct eight new local conservation laws associated with scaling symmetries by using a general theorem on conservation laws and the multipliers method. The property of scale invariance of those equations led to five conservation laws with a direct physical interpretation: energy, center of mass, and mass are the conserved quantities obtained in some cases.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300429TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.0429info:eu-repo/semantics/openAccessSILVA,E. M.SOUZA,W. L.eng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300429Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations |
title |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations |
spellingShingle |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations SILVA,E. M. scaling symmetries variable-coefficients nonlinear dispersive equations nonlinear self-adjointness conservation laws |
title_short |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations |
title_full |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations |
title_fullStr |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations |
title_full_unstemmed |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations |
title_sort |
Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations |
author |
SILVA,E. M. |
author_facet |
SILVA,E. M. SOUZA,W. L. |
author_role |
author |
author2 |
SOUZA,W. L. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
SILVA,E. M. SOUZA,W. L. |
dc.subject.por.fl_str_mv |
scaling symmetries variable-coefficients nonlinear dispersive equations nonlinear self-adjointness conservation laws |
topic |
scaling symmetries variable-coefficients nonlinear dispersive equations nonlinear self-adjointness conservation laws |
description |
Abstract: Scaling symmetries arise in different branches of physics, and symmetry-based approaches are powerful tools for studying scaling-invariant models since they can provide conservation laws that are not obvious by inspection. In this framework, the class of variable-coefficients nonlinear dispersive equations vc K ( m , n ), which contains several important evolution equations modeling nonlinear phenomena, is considered. For some of its scaling-invariant subclasses, we study its nonlinear self-adjointness and construct eight new local conservation laws associated with scaling symmetries by using a general theorem on conservation laws and the multipliers method. The property of scale invariance of those equations led to five conservation laws with a direct physical interpretation: energy, center of mass, and mass are the conserved quantities obtained in some cases. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300429 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300429 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2019.020.03.0429 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.20 n.3 2019 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220621070336 |