Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ISGT-LA.2019.8895354 http://hdl.handle.net/11449/232941 |
Resumo: | This paper presents the develop of a computational tool for solve the distribution network reconfiguration problem considering the power losses minimization and distributed generation. The proposed tool satisfies the operational constraints of systems, e.g., voltage limits in nodes and the current capacity of lines. The use of a MINLP and a Genetic Algorithm guarantees convergence to good quality solutions. This is a searching adaptive method - based on natural selection and natural genetic. It improves the solutions in combinatorial problems, in each iteration through their operators (selection, crossover and mutation). 14-Bus, 33-Bus and 69-bus test systems and 880-Bus real system were employed to show the effectiveness and satisfactory results of the proposed tool. |
id |
UNSP_a5a98869824b4f9d07ddc01c482c7e12 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/232941 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic AlgorithmDistribution systemsfeedersgenetic algorithmsMINLPoptimizationreconfigurationsubstationsThis paper presents the develop of a computational tool for solve the distribution network reconfiguration problem considering the power losses minimization and distributed generation. The proposed tool satisfies the operational constraints of systems, e.g., voltage limits in nodes and the current capacity of lines. The use of a MINLP and a Genetic Algorithm guarantees convergence to good quality solutions. This is a searching adaptive method - based on natural selection and natural genetic. It improves the solutions in combinatorial problems, in each iteration through their operators (selection, crossover and mutation). 14-Bus, 33-Bus and 69-bus test systems and 880-Bus real system were employed to show the effectiveness and satisfactory results of the proposed tool.University of Cuenca School of Electrical EngineeringSao Paulo State University Faculty of Engineering of Ilha SolteiraSao Paulo State University Faculty of Engineering of Ilha SolteiraSchool of Electrical EngineeringUniversidade Estadual Paulista (UNESP)Peñaloza, JohnYumbla, JairoLópez, JulioPadilha-Feltrin, Antonio [UNESP]2022-04-30T21:05:47Z2022-04-30T21:05:47Z2019-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ISGT-LA.2019.88953542019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019.http://hdl.handle.net/11449/23294110.1109/ISGT-LA.2019.88953542-s2.0-85075715343Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019info:eu-repo/semantics/openAccess2024-07-04T19:11:50Zoai:repositorio.unesp.br:11449/232941Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:08:28.687542Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm |
title |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm |
spellingShingle |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm Peñaloza, John Distribution systems feeders genetic algorithms MINLP optimization reconfiguration substations |
title_short |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm |
title_full |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm |
title_fullStr |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm |
title_full_unstemmed |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm |
title_sort |
Optimal Distribution Network Reconfiguration with Distributed Generation using a Genetic Algorithm |
author |
Peñaloza, John |
author_facet |
Peñaloza, John Yumbla, Jairo López, Julio Padilha-Feltrin, Antonio [UNESP] |
author_role |
author |
author2 |
Yumbla, Jairo López, Julio Padilha-Feltrin, Antonio [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
School of Electrical Engineering Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Peñaloza, John Yumbla, Jairo López, Julio Padilha-Feltrin, Antonio [UNESP] |
dc.subject.por.fl_str_mv |
Distribution systems feeders genetic algorithms MINLP optimization reconfiguration substations |
topic |
Distribution systems feeders genetic algorithms MINLP optimization reconfiguration substations |
description |
This paper presents the develop of a computational tool for solve the distribution network reconfiguration problem considering the power losses minimization and distributed generation. The proposed tool satisfies the operational constraints of systems, e.g., voltage limits in nodes and the current capacity of lines. The use of a MINLP and a Genetic Algorithm guarantees convergence to good quality solutions. This is a searching adaptive method - based on natural selection and natural genetic. It improves the solutions in combinatorial problems, in each iteration through their operators (selection, crossover and mutation). 14-Bus, 33-Bus and 69-bus test systems and 880-Bus real system were employed to show the effectiveness and satisfactory results of the proposed tool. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-01 2022-04-30T21:05:47Z 2022-04-30T21:05:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ISGT-LA.2019.8895354 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019. http://hdl.handle.net/11449/232941 10.1109/ISGT-LA.2019.8895354 2-s2.0-85075715343 |
url |
http://dx.doi.org/10.1109/ISGT-LA.2019.8895354 http://hdl.handle.net/11449/232941 |
identifier_str_mv |
2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019. 10.1109/ISGT-LA.2019.8895354 2-s2.0-85075715343 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129396195721216 |