ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping

Detalhes bibliográficos
Autor(a) principal: Caldato, Brenno A. C. [UNESP]
Data de Publicação: 2017
Outros Autores: Filho, Ricardo Achilles [UNESP], Castanho, José Eduardo C. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/SBR-LARS-R.2017.8215301
http://hdl.handle.net/11449/171104
Resumo: ORB-SLAM2 is one of the better-known open source SLAM implementations available. However, the dependence of visual features causes it to fail in featureless environments. With the present work, we propose a new technique to improve visual odometry results given by ORB-SLAM2 using a tightly Sensor Fusion approach to integrate camera and odometer data. In this work, we use odometer readings to improve the tracking results by adding graph constraints between frames and introduce a new method for preventing the tracking loss. We test our method using three different datasets, and show an improvement in the estimated trajectory, allowing a continuous tracking without losses.
id UNSP_a731236b5f1d3e714e6c145fdcc3853f
oai_identifier_str oai:repositorio.unesp.br:11449/171104
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mappingORB-SLAM2 is one of the better-known open source SLAM implementations available. However, the dependence of visual features causes it to fail in featureless environments. With the present work, we propose a new technique to improve visual odometry results given by ORB-SLAM2 using a tightly Sensor Fusion approach to integrate camera and odometer data. In this work, we use odometer readings to improve the tracking results by adding graph constraints between frames and introduce a new method for preventing the tracking loss. We test our method using three different datasets, and show an improvement in the estimated trajectory, allowing a continuous tracking without losses.Financiadora de Estudos e ProjetosDept. of Electrical Eng. School of Engineering São Paulo State University (Unesp)Dept. of Electrical Eng. School of Engineering São Paulo State University (Unesp)Universidade Estadual Paulista (Unesp)Caldato, Brenno A. C. [UNESP]Filho, Ricardo Achilles [UNESP]Castanho, José Eduardo C. [UNESP]2018-12-11T16:53:55Z2018-12-11T16:53:55Z2017-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1-5http://dx.doi.org/10.1109/SBR-LARS-R.2017.8215301Proceedings - 2017 LARS 14th Latin American Robotics Symposium and 2017 5th SBR Brazilian Symposium on Robotics, LARS-SBR 2017 - Part of the Robotics Conference 2017, v. 2017-December, p. 1-5.http://hdl.handle.net/11449/17110410.1109/SBR-LARS-R.2017.82153012-s2.0-85048548843Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - 2017 LARS 14th Latin American Robotics Symposium and 2017 5th SBR Brazilian Symposium on Robotics, LARS-SBR 2017 - Part of the Robotics Conference 2017info:eu-repo/semantics/openAccess2021-10-23T21:47:00Zoai:repositorio.unesp.br:11449/171104Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:07:43.648217Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping
title ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping
spellingShingle ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping
Caldato, Brenno A. C. [UNESP]
title_short ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping
title_full ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping
title_fullStr ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping
title_full_unstemmed ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping
title_sort ORB-ODOM: Stereo and odometer sensor fusion for simultaneous localization and mapping
author Caldato, Brenno A. C. [UNESP]
author_facet Caldato, Brenno A. C. [UNESP]
Filho, Ricardo Achilles [UNESP]
Castanho, José Eduardo C. [UNESP]
author_role author
author2 Filho, Ricardo Achilles [UNESP]
Castanho, José Eduardo C. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Caldato, Brenno A. C. [UNESP]
Filho, Ricardo Achilles [UNESP]
Castanho, José Eduardo C. [UNESP]
description ORB-SLAM2 is one of the better-known open source SLAM implementations available. However, the dependence of visual features causes it to fail in featureless environments. With the present work, we propose a new technique to improve visual odometry results given by ORB-SLAM2 using a tightly Sensor Fusion approach to integrate camera and odometer data. In this work, we use odometer readings to improve the tracking results by adding graph constraints between frames and introduce a new method for preventing the tracking loss. We test our method using three different datasets, and show an improvement in the estimated trajectory, allowing a continuous tracking without losses.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-15
2018-12-11T16:53:55Z
2018-12-11T16:53:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SBR-LARS-R.2017.8215301
Proceedings - 2017 LARS 14th Latin American Robotics Symposium and 2017 5th SBR Brazilian Symposium on Robotics, LARS-SBR 2017 - Part of the Robotics Conference 2017, v. 2017-December, p. 1-5.
http://hdl.handle.net/11449/171104
10.1109/SBR-LARS-R.2017.8215301
2-s2.0-85048548843
url http://dx.doi.org/10.1109/SBR-LARS-R.2017.8215301
http://hdl.handle.net/11449/171104
identifier_str_mv Proceedings - 2017 LARS 14th Latin American Robotics Symposium and 2017 5th SBR Brazilian Symposium on Robotics, LARS-SBR 2017 - Part of the Robotics Conference 2017, v. 2017-December, p. 1-5.
10.1109/SBR-LARS-R.2017.8215301
2-s2.0-85048548843
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings - 2017 LARS 14th Latin American Robotics Symposium and 2017 5th SBR Brazilian Symposium on Robotics, LARS-SBR 2017 - Part of the Robotics Conference 2017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1-5
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129394646974464