Non-parametric tests for small samples of categorized variables: A study

Detalhes bibliográficos
Autor(a) principal: Contador, José Luiz
Data de Publicação: 2016
Outros Autores: Senne, Edson Luiz França [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/0104-530X357-15
http://hdl.handle.net/11449/178330
Resumo: This paper presents a study on non-parametric tests to verify the similarity between two small samples of variables classified into multiple categories. The study shows that the only tests available for this situation are the chi-square and the exact tests. However, asymptotic tests, such as the chi-square, may not work well for small samples, leaving exact tests as the alternative. Nevertheless, if the number of classes increases, the implementation of these tests can become very difficult, in addition to requiring specific algorithms that may demand considerable computational effort. Therefore, as an alternative to the exact tests, a new test based on the difference between two uniform distributions is proposed. Computational assays are conducted to evaluate the performance of these three tests. Although non-parametric tests present numerous applications in various areas of knowledge, this study was motivated by the need to verify whether the business strategy adopted by a company is a determining factor for its competitiveness.
id UNSP_a85f35749b632352f763dce82942afc4
oai_identifier_str oai:repositorio.unesp.br:11449/178330
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Non-parametric tests for small samples of categorized variables: A studyCompetitive strategyComputer simulationNon-parametric testsSmall samplesThis paper presents a study on non-parametric tests to verify the similarity between two small samples of variables classified into multiple categories. The study shows that the only tests available for this situation are the chi-square and the exact tests. However, asymptotic tests, such as the chi-square, may not work well for small samples, leaving exact tests as the alternative. Nevertheless, if the number of classes increases, the implementation of these tests can become very difficult, in addition to requiring specific algorithms that may demand considerable computational effort. Therefore, as an alternative to the exact tests, a new test based on the difference between two uniform distributions is proposed. Computational assays are conducted to evaluate the performance of these three tests. Although non-parametric tests present numerous applications in various areas of knowledge, this study was motivated by the need to verify whether the business strategy adopted by a company is a determining factor for its competitiveness.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Programa de Pos-graduacao em Administracao das Micro e Pequenas Empresas Faculdade Campo Limpo Paulista - FACCAMP, Rua Guatemala, 167Faculdade de Engenharia Universidade Estadual Paulista - UNESP Campus de Guaratinguetá, Av. Ariberto Pereira da Cunha, 333Faculdade de Engenharia Universidade Estadual Paulista - UNESP Campus de Guaratinguetá, Av. Ariberto Pereira da Cunha, 333CNPq: 303339/2013-6CNPq: DT 307363/2015-5Faculdade Campo Limpo Paulista - FACCAMPUniversidade Estadual Paulista (Unesp)Contador, José LuizSenne, Edson Luiz França [UNESP]2018-12-11T17:29:48Z2018-12-11T17:29:48Z2016-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article588-599application/pdfhttp://dx.doi.org/10.1590/0104-530X357-15Gestao e Producao, v. 23, n. 3, p. 588-599, 2016.1806-96490104-530Xhttp://hdl.handle.net/11449/17833010.1590/0104-530X357-15S0104-530X20160003005882-s2.0-84990841896S0104-530X2016000300588.pdf13380082375900560000-0002-6544-2964Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGestao e Producaoinfo:eu-repo/semantics/openAccess2024-07-02T14:28:55Zoai:repositorio.unesp.br:11449/178330Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:27:11.149404Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Non-parametric tests for small samples of categorized variables: A study
title Non-parametric tests for small samples of categorized variables: A study
spellingShingle Non-parametric tests for small samples of categorized variables: A study
Contador, José Luiz
Competitive strategy
Computer simulation
Non-parametric tests
Small samples
title_short Non-parametric tests for small samples of categorized variables: A study
title_full Non-parametric tests for small samples of categorized variables: A study
title_fullStr Non-parametric tests for small samples of categorized variables: A study
title_full_unstemmed Non-parametric tests for small samples of categorized variables: A study
title_sort Non-parametric tests for small samples of categorized variables: A study
author Contador, José Luiz
author_facet Contador, José Luiz
Senne, Edson Luiz França [UNESP]
author_role author
author2 Senne, Edson Luiz França [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Faculdade Campo Limpo Paulista - FACCAMP
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Contador, José Luiz
Senne, Edson Luiz França [UNESP]
dc.subject.por.fl_str_mv Competitive strategy
Computer simulation
Non-parametric tests
Small samples
topic Competitive strategy
Computer simulation
Non-parametric tests
Small samples
description This paper presents a study on non-parametric tests to verify the similarity between two small samples of variables classified into multiple categories. The study shows that the only tests available for this situation are the chi-square and the exact tests. However, asymptotic tests, such as the chi-square, may not work well for small samples, leaving exact tests as the alternative. Nevertheless, if the number of classes increases, the implementation of these tests can become very difficult, in addition to requiring specific algorithms that may demand considerable computational effort. Therefore, as an alternative to the exact tests, a new test based on the difference between two uniform distributions is proposed. Computational assays are conducted to evaluate the performance of these three tests. Although non-parametric tests present numerous applications in various areas of knowledge, this study was motivated by the need to verify whether the business strategy adopted by a company is a determining factor for its competitiveness.
publishDate 2016
dc.date.none.fl_str_mv 2016-07-01
2018-12-11T17:29:48Z
2018-12-11T17:29:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/0104-530X357-15
Gestao e Producao, v. 23, n. 3, p. 588-599, 2016.
1806-9649
0104-530X
http://hdl.handle.net/11449/178330
10.1590/0104-530X357-15
S0104-530X2016000300588
2-s2.0-84990841896
S0104-530X2016000300588.pdf
1338008237590056
0000-0002-6544-2964
url http://dx.doi.org/10.1590/0104-530X357-15
http://hdl.handle.net/11449/178330
identifier_str_mv Gestao e Producao, v. 23, n. 3, p. 588-599, 2016.
1806-9649
0104-530X
10.1590/0104-530X357-15
S0104-530X2016000300588
2-s2.0-84990841896
S0104-530X2016000300588.pdf
1338008237590056
0000-0002-6544-2964
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gestao e Producao
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 588-599
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128654228586496