Non-parametric tests for small samples of categorized variables: A study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/0104-530X357-15 http://hdl.handle.net/11449/178330 |
Resumo: | This paper presents a study on non-parametric tests to verify the similarity between two small samples of variables classified into multiple categories. The study shows that the only tests available for this situation are the chi-square and the exact tests. However, asymptotic tests, such as the chi-square, may not work well for small samples, leaving exact tests as the alternative. Nevertheless, if the number of classes increases, the implementation of these tests can become very difficult, in addition to requiring specific algorithms that may demand considerable computational effort. Therefore, as an alternative to the exact tests, a new test based on the difference between two uniform distributions is proposed. Computational assays are conducted to evaluate the performance of these three tests. Although non-parametric tests present numerous applications in various areas of knowledge, this study was motivated by the need to verify whether the business strategy adopted by a company is a determining factor for its competitiveness. |
id |
UNSP_a85f35749b632352f763dce82942afc4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/178330 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Non-parametric tests for small samples of categorized variables: A studyCompetitive strategyComputer simulationNon-parametric testsSmall samplesThis paper presents a study on non-parametric tests to verify the similarity between two small samples of variables classified into multiple categories. The study shows that the only tests available for this situation are the chi-square and the exact tests. However, asymptotic tests, such as the chi-square, may not work well for small samples, leaving exact tests as the alternative. Nevertheless, if the number of classes increases, the implementation of these tests can become very difficult, in addition to requiring specific algorithms that may demand considerable computational effort. Therefore, as an alternative to the exact tests, a new test based on the difference between two uniform distributions is proposed. Computational assays are conducted to evaluate the performance of these three tests. Although non-parametric tests present numerous applications in various areas of knowledge, this study was motivated by the need to verify whether the business strategy adopted by a company is a determining factor for its competitiveness.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Programa de Pos-graduacao em Administracao das Micro e Pequenas Empresas Faculdade Campo Limpo Paulista - FACCAMP, Rua Guatemala, 167Faculdade de Engenharia Universidade Estadual Paulista - UNESP Campus de Guaratinguetá, Av. Ariberto Pereira da Cunha, 333Faculdade de Engenharia Universidade Estadual Paulista - UNESP Campus de Guaratinguetá, Av. Ariberto Pereira da Cunha, 333CNPq: 303339/2013-6CNPq: DT 307363/2015-5Faculdade Campo Limpo Paulista - FACCAMPUniversidade Estadual Paulista (Unesp)Contador, José LuizSenne, Edson Luiz França [UNESP]2018-12-11T17:29:48Z2018-12-11T17:29:48Z2016-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article588-599application/pdfhttp://dx.doi.org/10.1590/0104-530X357-15Gestao e Producao, v. 23, n. 3, p. 588-599, 2016.1806-96490104-530Xhttp://hdl.handle.net/11449/17833010.1590/0104-530X357-15S0104-530X20160003005882-s2.0-84990841896S0104-530X2016000300588.pdf13380082375900560000-0002-6544-2964Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGestao e Producaoinfo:eu-repo/semantics/openAccess2024-07-02T14:28:55Zoai:repositorio.unesp.br:11449/178330Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:27:11.149404Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Non-parametric tests for small samples of categorized variables: A study |
title |
Non-parametric tests for small samples of categorized variables: A study |
spellingShingle |
Non-parametric tests for small samples of categorized variables: A study Contador, José Luiz Competitive strategy Computer simulation Non-parametric tests Small samples |
title_short |
Non-parametric tests for small samples of categorized variables: A study |
title_full |
Non-parametric tests for small samples of categorized variables: A study |
title_fullStr |
Non-parametric tests for small samples of categorized variables: A study |
title_full_unstemmed |
Non-parametric tests for small samples of categorized variables: A study |
title_sort |
Non-parametric tests for small samples of categorized variables: A study |
author |
Contador, José Luiz |
author_facet |
Contador, José Luiz Senne, Edson Luiz França [UNESP] |
author_role |
author |
author2 |
Senne, Edson Luiz França [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Faculdade Campo Limpo Paulista - FACCAMP Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Contador, José Luiz Senne, Edson Luiz França [UNESP] |
dc.subject.por.fl_str_mv |
Competitive strategy Computer simulation Non-parametric tests Small samples |
topic |
Competitive strategy Computer simulation Non-parametric tests Small samples |
description |
This paper presents a study on non-parametric tests to verify the similarity between two small samples of variables classified into multiple categories. The study shows that the only tests available for this situation are the chi-square and the exact tests. However, asymptotic tests, such as the chi-square, may not work well for small samples, leaving exact tests as the alternative. Nevertheless, if the number of classes increases, the implementation of these tests can become very difficult, in addition to requiring specific algorithms that may demand considerable computational effort. Therefore, as an alternative to the exact tests, a new test based on the difference between two uniform distributions is proposed. Computational assays are conducted to evaluate the performance of these three tests. Although non-parametric tests present numerous applications in various areas of knowledge, this study was motivated by the need to verify whether the business strategy adopted by a company is a determining factor for its competitiveness. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07-01 2018-12-11T17:29:48Z 2018-12-11T17:29:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/0104-530X357-15 Gestao e Producao, v. 23, n. 3, p. 588-599, 2016. 1806-9649 0104-530X http://hdl.handle.net/11449/178330 10.1590/0104-530X357-15 S0104-530X2016000300588 2-s2.0-84990841896 S0104-530X2016000300588.pdf 1338008237590056 0000-0002-6544-2964 |
url |
http://dx.doi.org/10.1590/0104-530X357-15 http://hdl.handle.net/11449/178330 |
identifier_str_mv |
Gestao e Producao, v. 23, n. 3, p. 588-599, 2016. 1806-9649 0104-530X 10.1590/0104-530X357-15 S0104-530X2016000300588 2-s2.0-84990841896 S0104-530X2016000300588.pdf 1338008237590056 0000-0002-6544-2964 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gestao e Producao |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
588-599 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128654228586496 |