Periodic perturbations of quadratic planar polynomial vector fields

Detalhes bibliográficos
Autor(a) principal: Messias, Marcelo [UNESP]
Data de Publicação: 2002
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/S0001-37652002000200001
http://hdl.handle.net/11449/7125
Resumo: Neste trabalho são estudadas perturbações periódicas, dependendo de dois parâmetros, de campos vetoriais polinomiais planares que possuem um ciclo heteroclínico infinito, que consiste de uma solução ilimitada, que conecta dois pontos de sela no infinito. O estudo global do campo vetorial, envolvendo o infinito, foi elaborado utilizando-se a compactificação de Poincaré. O resultado principal estabelece que, para certo tipo de perturbação periódica, o sistema apresenta tangências heteroclínicas e intersecção transversal das variedades invariantes de órbitas periódicas no infinito, o que implica, via o Teorema de Birkhoff-Smale, em um comportamento dinâmico bastante complexo das soluções do sistema perturbado, em uma região finita do plano de fase.
id UNSP_a9d50572691a9519a3844234e0cbc5d3
oai_identifier_str oai:repositorio.unesp.br:11449/7125
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Periodic perturbations of quadratic planar polynomial vector fieldsciclos heteroclínicosperturbações periódicassistemas polinomiaisheteroclinic cyclesperiodic perturbationspolynomial systemsNeste trabalho são estudadas perturbações periódicas, dependendo de dois parâmetros, de campos vetoriais polinomiais planares que possuem um ciclo heteroclínico infinito, que consiste de uma solução ilimitada, que conecta dois pontos de sela no infinito. O estudo global do campo vetorial, envolvendo o infinito, foi elaborado utilizando-se a compactificação de Poincaré. O resultado principal estabelece que, para certo tipo de perturbação periódica, o sistema apresenta tangências heteroclínicas e intersecção transversal das variedades invariantes de órbitas periódicas no infinito, o que implica, via o Teorema de Birkhoff-Smale, em um comportamento dinâmico bastante complexo das soluções do sistema perturbado, em uma região finita do plano de fase.In this work are studied periodic perturbations, depending on two parameters, of quadratic planar polynomial vector fields having an infinite heteroclinic cycle, which is an unbounded solution joining two saddle points at infinity. The global study envolving infinity is performed via the Poincaré compactification. The main result obtained states that for certain types of periodic perturbations, the perturbed system has quadratic heteroclinic tangencies and transverse intersections between the local stable and unstable manifolds of the hyperbolic periodic orbits at infinity. It implies, via the Birkhoff-Smale Theorem, in a complex dynamical behavior of the solutions of the perturbed system, in a finite part of the phase plane.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista Faculdade de Ciências e Tecnologia Departamento de MatemáticaUniversidade Estadual Paulista Faculdade de Ciências e Tecnologia Departamento de MatemáticaAcademia Brasileira de CiênciasUniversidade Estadual Paulista (Unesp)Messias, Marcelo [UNESP]2014-05-20T13:23:34Z2014-05-20T13:23:34Z2002-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article193-198application/pdfhttp://dx.doi.org/10.1590/S0001-37652002000200001Anais da Academia Brasileira de Ciências. Academia Brasileira de Ciências, v. 74, n. 2, p. 193-198, 2002.0001-3765http://hdl.handle.net/11449/712510.1590/S0001-37652002000200001S0001-37652002000200001S0001-37652002000200001.pdf3757225669056317SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAnais da Academia Brasileira de Ciências0.9560,418info:eu-repo/semantics/openAccess2024-06-19T14:32:06Zoai:repositorio.unesp.br:11449/7125Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:08:28.824031Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Periodic perturbations of quadratic planar polynomial vector fields
title Periodic perturbations of quadratic planar polynomial vector fields
spellingShingle Periodic perturbations of quadratic planar polynomial vector fields
Messias, Marcelo [UNESP]
ciclos heteroclínicos
perturbações periódicas
sistemas polinomiais
heteroclinic cycles
periodic perturbations
polynomial systems
title_short Periodic perturbations of quadratic planar polynomial vector fields
title_full Periodic perturbations of quadratic planar polynomial vector fields
title_fullStr Periodic perturbations of quadratic planar polynomial vector fields
title_full_unstemmed Periodic perturbations of quadratic planar polynomial vector fields
title_sort Periodic perturbations of quadratic planar polynomial vector fields
author Messias, Marcelo [UNESP]
author_facet Messias, Marcelo [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Messias, Marcelo [UNESP]
dc.subject.por.fl_str_mv ciclos heteroclínicos
perturbações periódicas
sistemas polinomiais
heteroclinic cycles
periodic perturbations
polynomial systems
topic ciclos heteroclínicos
perturbações periódicas
sistemas polinomiais
heteroclinic cycles
periodic perturbations
polynomial systems
description Neste trabalho são estudadas perturbações periódicas, dependendo de dois parâmetros, de campos vetoriais polinomiais planares que possuem um ciclo heteroclínico infinito, que consiste de uma solução ilimitada, que conecta dois pontos de sela no infinito. O estudo global do campo vetorial, envolvendo o infinito, foi elaborado utilizando-se a compactificação de Poincaré. O resultado principal estabelece que, para certo tipo de perturbação periódica, o sistema apresenta tangências heteroclínicas e intersecção transversal das variedades invariantes de órbitas periódicas no infinito, o que implica, via o Teorema de Birkhoff-Smale, em um comportamento dinâmico bastante complexo das soluções do sistema perturbado, em uma região finita do plano de fase.
publishDate 2002
dc.date.none.fl_str_mv 2002-06-01
2014-05-20T13:23:34Z
2014-05-20T13:23:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S0001-37652002000200001
Anais da Academia Brasileira de Ciências. Academia Brasileira de Ciências, v. 74, n. 2, p. 193-198, 2002.
0001-3765
http://hdl.handle.net/11449/7125
10.1590/S0001-37652002000200001
S0001-37652002000200001
S0001-37652002000200001.pdf
3757225669056317
url http://dx.doi.org/10.1590/S0001-37652002000200001
http://hdl.handle.net/11449/7125
identifier_str_mv Anais da Academia Brasileira de Ciências. Academia Brasileira de Ciências, v. 74, n. 2, p. 193-198, 2002.
0001-3765
10.1590/S0001-37652002000200001
S0001-37652002000200001
S0001-37652002000200001.pdf
3757225669056317
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Anais da Academia Brasileira de Ciências
0.956
0,418
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 193-198
application/pdf
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129493638840320