Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals

Detalhes bibliográficos
Autor(a) principal: Rosal, F. J. O.
Data de Publicação: 2018
Outros Autores: Gouveia, A. F., Sczancoski, J. C., Lemos, P. S., Longo, E. [UNESP], Zhang, B., Cavalcante, L. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.inoche.2018.10.001
http://hdl.handle.net/11449/186511
Resumo: In this communications, we report the synthesis of nickel tungstate (NiWO4) nanocrystals by controlled co-precipitation at 95 degrees C for 2 h, followed by heat treatment at 600 degrees C for 2 h. The structure of the NiWO4 nano crystals was characterized using X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the shape, average size and propose a growth mechanism for the synthesized NiWO4 nanocrystals. The optical behavior was investigated by ultraviolet visible (UV-Vis) spectroscopy and first-principles quantum mechanical calculations based on the density functional theory at the B3LYP level to obtain their electronic band structure and density of states. We investigated the sonophotocatalytic (SPC) properties of NiWO4 nanocrystals for degradation of remazol brilliant violet 5R (RBV5R) anionic dye using a violet light emitting diode of power 10 W. The XRD patterns indicate that the NiWO4 nanocrystals heat-treated at 600 degrees C for 2 h have a wolframite-type monoclinic structure. The FE-SEM images showed the presence of irregular sphere-like crystals formed by self-assembly of several NiWO4 nano crystals. The experimental optical band gap energy (E-gap(exp) was found to be 2.77 eV using UV Vis spectroscopy and theoretical calculations indicate an indirect band gap with E-gap 3.91 eV, which the (O 2p orbitals) are predominant in the valence band and the (W 5d orbitals) in the conduction band and inhomogeneous electronic distribution into the lattice with the electron density map. We demonstrate for the first time that SPC activity can be enhanced after 120 min by approximately 32% for the degradation of the RBV5R anionic dye by using a NiWO4 nanocatalyst.
id UNSP_ab4039de54df5aae009a9337ccf92263
oai_identifier_str oai:repositorio.unesp.br:11449/186511
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystalsNiWO4 nanocrystalsGrowth mechanismOptical band gapBand structureSonophotocatalysisIn this communications, we report the synthesis of nickel tungstate (NiWO4) nanocrystals by controlled co-precipitation at 95 degrees C for 2 h, followed by heat treatment at 600 degrees C for 2 h. The structure of the NiWO4 nano crystals was characterized using X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the shape, average size and propose a growth mechanism for the synthesized NiWO4 nanocrystals. The optical behavior was investigated by ultraviolet visible (UV-Vis) spectroscopy and first-principles quantum mechanical calculations based on the density functional theory at the B3LYP level to obtain their electronic band structure and density of states. We investigated the sonophotocatalytic (SPC) properties of NiWO4 nanocrystals for degradation of remazol brilliant violet 5R (RBV5R) anionic dye using a violet light emitting diode of power 10 W. The XRD patterns indicate that the NiWO4 nanocrystals heat-treated at 600 degrees C for 2 h have a wolframite-type monoclinic structure. The FE-SEM images showed the presence of irregular sphere-like crystals formed by self-assembly of several NiWO4 nano crystals. The experimental optical band gap energy (E-gap(exp) was found to be 2.77 eV using UV Vis spectroscopy and theoretical calculations indicate an indirect band gap with E-gap 3.91 eV, which the (O 2p orbitals) are predominant in the valence band and the (W 5d orbitals) in the conduction band and inhomogeneous electronic distribution into the lattice with the electron density map. We demonstrate for the first time that SPC activity can be enhanced after 120 min by approximately 32% for the degradation of the RBV5R anionic dye by using a NiWO4 nanocatalyst.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Piaui, PPGQ CCN DQ, Rua Joao Cabral 2231,POB 381, BR-64002150 Teresina, PI, BrazilUniv Fed Sao Carlos, CDMF, POB 676, BR-13565905 Sao Carlos, SP, BrazilUniv Estadual Paulista, CDMF, POB 355, BR-14801907 Araraquara, SP, BrazilSUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USAUniv Estadual Paulista, CDMF, POB 355, BR-14801907 Araraquara, SP, BrazilCNPq: 350711/2012-7CNPq: 479644/2012-8CNPq: 312318/2017-0CNPq: 150949/2018-9FAPESP: 13/07296-2Elsevier B.V.Univ Estadual PiauiUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)SUNY Stony BrookRosal, F. J. O.Gouveia, A. F.Sczancoski, J. C.Lemos, P. S.Longo, E. [UNESP]Zhang, B.Cavalcante, L. S.2019-10-05T04:10:10Z2019-10-05T04:10:10Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article34-40http://dx.doi.org/10.1016/j.inoche.2018.10.001Inorganic Chemistry Communications. Amsterdam: Elsevier, v. 98, p. 34-40, 2018.1387-7003http://hdl.handle.net/11449/18651110.1016/j.inoche.2018.10.001WOS:000451654300005Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInorganic Chemistry Communicationsinfo:eu-repo/semantics/openAccess2021-10-23T01:58:01Zoai:repositorio.unesp.br:11449/186511Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-23T01:58:01Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
title Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
spellingShingle Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
Rosal, F. J. O.
NiWO4 nanocrystals
Growth mechanism
Optical band gap
Band structure
Sonophotocatalysis
title_short Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
title_full Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
title_fullStr Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
title_full_unstemmed Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
title_sort Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
author Rosal, F. J. O.
author_facet Rosal, F. J. O.
Gouveia, A. F.
Sczancoski, J. C.
Lemos, P. S.
Longo, E. [UNESP]
Zhang, B.
Cavalcante, L. S.
author_role author
author2 Gouveia, A. F.
Sczancoski, J. C.
Lemos, P. S.
Longo, E. [UNESP]
Zhang, B.
Cavalcante, L. S.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Estadual Piaui
Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
SUNY Stony Brook
dc.contributor.author.fl_str_mv Rosal, F. J. O.
Gouveia, A. F.
Sczancoski, J. C.
Lemos, P. S.
Longo, E. [UNESP]
Zhang, B.
Cavalcante, L. S.
dc.subject.por.fl_str_mv NiWO4 nanocrystals
Growth mechanism
Optical band gap
Band structure
Sonophotocatalysis
topic NiWO4 nanocrystals
Growth mechanism
Optical band gap
Band structure
Sonophotocatalysis
description In this communications, we report the synthesis of nickel tungstate (NiWO4) nanocrystals by controlled co-precipitation at 95 degrees C for 2 h, followed by heat treatment at 600 degrees C for 2 h. The structure of the NiWO4 nano crystals was characterized using X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the shape, average size and propose a growth mechanism for the synthesized NiWO4 nanocrystals. The optical behavior was investigated by ultraviolet visible (UV-Vis) spectroscopy and first-principles quantum mechanical calculations based on the density functional theory at the B3LYP level to obtain their electronic band structure and density of states. We investigated the sonophotocatalytic (SPC) properties of NiWO4 nanocrystals for degradation of remazol brilliant violet 5R (RBV5R) anionic dye using a violet light emitting diode of power 10 W. The XRD patterns indicate that the NiWO4 nanocrystals heat-treated at 600 degrees C for 2 h have a wolframite-type monoclinic structure. The FE-SEM images showed the presence of irregular sphere-like crystals formed by self-assembly of several NiWO4 nano crystals. The experimental optical band gap energy (E-gap(exp) was found to be 2.77 eV using UV Vis spectroscopy and theoretical calculations indicate an indirect band gap with E-gap 3.91 eV, which the (O 2p orbitals) are predominant in the valence band and the (W 5d orbitals) in the conduction band and inhomogeneous electronic distribution into the lattice with the electron density map. We demonstrate for the first time that SPC activity can be enhanced after 120 min by approximately 32% for the degradation of the RBV5R anionic dye by using a NiWO4 nanocatalyst.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01
2019-10-05T04:10:10Z
2019-10-05T04:10:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.inoche.2018.10.001
Inorganic Chemistry Communications. Amsterdam: Elsevier, v. 98, p. 34-40, 2018.
1387-7003
http://hdl.handle.net/11449/186511
10.1016/j.inoche.2018.10.001
WOS:000451654300005
url http://dx.doi.org/10.1016/j.inoche.2018.10.001
http://hdl.handle.net/11449/186511
identifier_str_mv Inorganic Chemistry Communications. Amsterdam: Elsevier, v. 98, p. 34-40, 2018.
1387-7003
10.1016/j.inoche.2018.10.001
WOS:000451654300005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Inorganic Chemistry Communications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 34-40
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799965215988645888