Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.inoche.2018.10.001 http://hdl.handle.net/11449/186511 |
Resumo: | In this communications, we report the synthesis of nickel tungstate (NiWO4) nanocrystals by controlled co-precipitation at 95 degrees C for 2 h, followed by heat treatment at 600 degrees C for 2 h. The structure of the NiWO4 nano crystals was characterized using X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the shape, average size and propose a growth mechanism for the synthesized NiWO4 nanocrystals. The optical behavior was investigated by ultraviolet visible (UV-Vis) spectroscopy and first-principles quantum mechanical calculations based on the density functional theory at the B3LYP level to obtain their electronic band structure and density of states. We investigated the sonophotocatalytic (SPC) properties of NiWO4 nanocrystals for degradation of remazol brilliant violet 5R (RBV5R) anionic dye using a violet light emitting diode of power 10 W. The XRD patterns indicate that the NiWO4 nanocrystals heat-treated at 600 degrees C for 2 h have a wolframite-type monoclinic structure. The FE-SEM images showed the presence of irregular sphere-like crystals formed by self-assembly of several NiWO4 nano crystals. The experimental optical band gap energy (E-gap(exp) was found to be 2.77 eV using UV Vis spectroscopy and theoretical calculations indicate an indirect band gap with E-gap 3.91 eV, which the (O 2p orbitals) are predominant in the valence band and the (W 5d orbitals) in the conduction band and inhomogeneous electronic distribution into the lattice with the electron density map. We demonstrate for the first time that SPC activity can be enhanced after 120 min by approximately 32% for the degradation of the RBV5R anionic dye by using a NiWO4 nanocatalyst. |
id |
UNSP_ab4039de54df5aae009a9337ccf92263 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186511 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystalsNiWO4 nanocrystalsGrowth mechanismOptical band gapBand structureSonophotocatalysisIn this communications, we report the synthesis of nickel tungstate (NiWO4) nanocrystals by controlled co-precipitation at 95 degrees C for 2 h, followed by heat treatment at 600 degrees C for 2 h. The structure of the NiWO4 nano crystals was characterized using X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the shape, average size and propose a growth mechanism for the synthesized NiWO4 nanocrystals. The optical behavior was investigated by ultraviolet visible (UV-Vis) spectroscopy and first-principles quantum mechanical calculations based on the density functional theory at the B3LYP level to obtain their electronic band structure and density of states. We investigated the sonophotocatalytic (SPC) properties of NiWO4 nanocrystals for degradation of remazol brilliant violet 5R (RBV5R) anionic dye using a violet light emitting diode of power 10 W. The XRD patterns indicate that the NiWO4 nanocrystals heat-treated at 600 degrees C for 2 h have a wolframite-type monoclinic structure. The FE-SEM images showed the presence of irregular sphere-like crystals formed by self-assembly of several NiWO4 nano crystals. The experimental optical band gap energy (E-gap(exp) was found to be 2.77 eV using UV Vis spectroscopy and theoretical calculations indicate an indirect band gap with E-gap 3.91 eV, which the (O 2p orbitals) are predominant in the valence band and the (W 5d orbitals) in the conduction band and inhomogeneous electronic distribution into the lattice with the electron density map. We demonstrate for the first time that SPC activity can be enhanced after 120 min by approximately 32% for the degradation of the RBV5R anionic dye by using a NiWO4 nanocatalyst.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Piaui, PPGQ CCN DQ, Rua Joao Cabral 2231,POB 381, BR-64002150 Teresina, PI, BrazilUniv Fed Sao Carlos, CDMF, POB 676, BR-13565905 Sao Carlos, SP, BrazilUniv Estadual Paulista, CDMF, POB 355, BR-14801907 Araraquara, SP, BrazilSUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USAUniv Estadual Paulista, CDMF, POB 355, BR-14801907 Araraquara, SP, BrazilCNPq: 350711/2012-7CNPq: 479644/2012-8CNPq: 312318/2017-0CNPq: 150949/2018-9FAPESP: 13/07296-2Elsevier B.V.Univ Estadual PiauiUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)SUNY Stony BrookRosal, F. J. O.Gouveia, A. F.Sczancoski, J. C.Lemos, P. S.Longo, E. [UNESP]Zhang, B.Cavalcante, L. S.2019-10-05T04:10:10Z2019-10-05T04:10:10Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article34-40http://dx.doi.org/10.1016/j.inoche.2018.10.001Inorganic Chemistry Communications. Amsterdam: Elsevier, v. 98, p. 34-40, 2018.1387-7003http://hdl.handle.net/11449/18651110.1016/j.inoche.2018.10.001WOS:000451654300005Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInorganic Chemistry Communicationsinfo:eu-repo/semantics/openAccess2021-10-23T01:58:01Zoai:repositorio.unesp.br:11449/186511Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:47:59.578458Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals |
title |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals |
spellingShingle |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals Rosal, F. J. O. NiWO4 nanocrystals Growth mechanism Optical band gap Band structure Sonophotocatalysis |
title_short |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals |
title_full |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals |
title_fullStr |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals |
title_full_unstemmed |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals |
title_sort |
Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals |
author |
Rosal, F. J. O. |
author_facet |
Rosal, F. J. O. Gouveia, A. F. Sczancoski, J. C. Lemos, P. S. Longo, E. [UNESP] Zhang, B. Cavalcante, L. S. |
author_role |
author |
author2 |
Gouveia, A. F. Sczancoski, J. C. Lemos, P. S. Longo, E. [UNESP] Zhang, B. Cavalcante, L. S. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Univ Estadual Piaui Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) SUNY Stony Brook |
dc.contributor.author.fl_str_mv |
Rosal, F. J. O. Gouveia, A. F. Sczancoski, J. C. Lemos, P. S. Longo, E. [UNESP] Zhang, B. Cavalcante, L. S. |
dc.subject.por.fl_str_mv |
NiWO4 nanocrystals Growth mechanism Optical band gap Band structure Sonophotocatalysis |
topic |
NiWO4 nanocrystals Growth mechanism Optical band gap Band structure Sonophotocatalysis |
description |
In this communications, we report the synthesis of nickel tungstate (NiWO4) nanocrystals by controlled co-precipitation at 95 degrees C for 2 h, followed by heat treatment at 600 degrees C for 2 h. The structure of the NiWO4 nano crystals was characterized using X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the shape, average size and propose a growth mechanism for the synthesized NiWO4 nanocrystals. The optical behavior was investigated by ultraviolet visible (UV-Vis) spectroscopy and first-principles quantum mechanical calculations based on the density functional theory at the B3LYP level to obtain their electronic band structure and density of states. We investigated the sonophotocatalytic (SPC) properties of NiWO4 nanocrystals for degradation of remazol brilliant violet 5R (RBV5R) anionic dye using a violet light emitting diode of power 10 W. The XRD patterns indicate that the NiWO4 nanocrystals heat-treated at 600 degrees C for 2 h have a wolframite-type monoclinic structure. The FE-SEM images showed the presence of irregular sphere-like crystals formed by self-assembly of several NiWO4 nano crystals. The experimental optical band gap energy (E-gap(exp) was found to be 2.77 eV using UV Vis spectroscopy and theoretical calculations indicate an indirect band gap with E-gap 3.91 eV, which the (O 2p orbitals) are predominant in the valence band and the (W 5d orbitals) in the conduction band and inhomogeneous electronic distribution into the lattice with the electron density map. We demonstrate for the first time that SPC activity can be enhanced after 120 min by approximately 32% for the degradation of the RBV5R anionic dye by using a NiWO4 nanocatalyst. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01 2019-10-05T04:10:10Z 2019-10-05T04:10:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.inoche.2018.10.001 Inorganic Chemistry Communications. Amsterdam: Elsevier, v. 98, p. 34-40, 2018. 1387-7003 http://hdl.handle.net/11449/186511 10.1016/j.inoche.2018.10.001 WOS:000451654300005 |
url |
http://dx.doi.org/10.1016/j.inoche.2018.10.001 http://hdl.handle.net/11449/186511 |
identifier_str_mv |
Inorganic Chemistry Communications. Amsterdam: Elsevier, v. 98, p. 34-40, 2018. 1387-7003 10.1016/j.inoche.2018.10.001 WOS:000451654300005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Inorganic Chemistry Communications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
34-40 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129119850856448 |