Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior

Detalhes bibliográficos
Autor(a) principal: Araujo, M. M.
Data de Publicação: 2016
Outros Autores: Silva, L. K. R., Sczancoski, J. C. [UNESP], Orlandi, M. O. [UNESP], Longo, E. [UNESP], Santos, A. G. D., Sa, J. L. S., Santos, R. S., Luz, G. E., Cavalcante, L. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.apsusc.2016.08.018
http://hdl.handle.net/11449/165328
Resumo: In this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO2) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO2 nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO2 nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO2 nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO2 nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO2-SBA mesoporous. UV-vis spectra revealed a dependence of the optical band gap energy (E-gap) with the decreasing of Si/Ti molar ratios. (C) 2016 Elsevier B.V. All rights reserved.
id UNSP_653dee2bb5fa7879e7accbefd6555acc
oai_identifier_str oai:repositorio.unesp.br:11449/165328
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behaviorSBA-15 mesoporesTiO2 nanocrystalsInfraredGrowth mechanismOptical band gapIn this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO2) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO2 nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO2 nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO2 nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO2 nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO2-SBA mesoporous. UV-vis spectra revealed a dependence of the optical band gap energy (E-gap) with the decreasing of Si/Ti molar ratios. (C) 2016 Elsevier B.V. All rights reserved.LIMAV-UFPIIFPIUERNConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Piaui, PPGQ GERATEC CCN DQ, Joao Cabral,2231,POB 381, BR-64002150 Teresina, PI, BrazilUniv Fed Piaui UFPI, DQ, BR-64049550 Teresina, PI, BrazilCDMF Univ Estadual Paulista, POB 355, BR-14801907 Araraquara, SP, BrazilUniv Estado Rio Grande do Norte, Dept Ciencias Nat, Mossoro, RN, BrazilCDMF Univ Estadual Paulista, POB 355, BR-14801907 Araraquara, SP, BrazilCNPq: 307559/2015-7CNPq: 350711/2012-7CNPq: 479644/2012-8CNPq: 455864/2014-4FAPESP: 12/14004-5FAPESP: 13/07296-2CAPES: 33001014005P5CAPES: 20131475Elsevier B.V.Univ Estadual PiauiUniv Fed Piaui UFPIUniversidade Estadual Paulista (Unesp)Univ Estado Rio Grande do NorteAraujo, M. M.Silva, L. K. R.Sczancoski, J. C. [UNESP]Orlandi, M. O. [UNESP]Longo, E. [UNESP]Santos, A. G. D.Sa, J. L. S.Santos, R. S.Luz, G. E.Cavalcante, L. S.2018-11-27T21:47:42Z2018-11-27T21:47:42Z2016-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1137-1147application/pdfhttp://dx.doi.org/10.1016/j.apsusc.2016.08.018Applied Surface Science. Amsterdam: Elsevier Science Bv, v. 389, p. 1137-1147, 2016.0169-4332http://hdl.handle.net/11449/16532810.1016/j.apsusc.2016.08.018WOS:000384577600139WOS000384577600139.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Surface Science1,093info:eu-repo/semantics/openAccess2023-12-15T06:22:18Zoai:repositorio.unesp.br:11449/165328Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:27:09.330310Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
title Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
spellingShingle Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
Araujo, M. M.
SBA-15 mesopores
TiO2 nanocrystals
Infrared
Growth mechanism
Optical band gap
title_short Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
title_full Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
title_fullStr Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
title_full_unstemmed Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
title_sort Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
author Araujo, M. M.
author_facet Araujo, M. M.
Silva, L. K. R.
Sczancoski, J. C. [UNESP]
Orlandi, M. O. [UNESP]
Longo, E. [UNESP]
Santos, A. G. D.
Sa, J. L. S.
Santos, R. S.
Luz, G. E.
Cavalcante, L. S.
author_role author
author2 Silva, L. K. R.
Sczancoski, J. C. [UNESP]
Orlandi, M. O. [UNESP]
Longo, E. [UNESP]
Santos, A. G. D.
Sa, J. L. S.
Santos, R. S.
Luz, G. E.
Cavalcante, L. S.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Estadual Piaui
Univ Fed Piaui UFPI
Universidade Estadual Paulista (Unesp)
Univ Estado Rio Grande do Norte
dc.contributor.author.fl_str_mv Araujo, M. M.
Silva, L. K. R.
Sczancoski, J. C. [UNESP]
Orlandi, M. O. [UNESP]
Longo, E. [UNESP]
Santos, A. G. D.
Sa, J. L. S.
Santos, R. S.
Luz, G. E.
Cavalcante, L. S.
dc.subject.por.fl_str_mv SBA-15 mesopores
TiO2 nanocrystals
Infrared
Growth mechanism
Optical band gap
topic SBA-15 mesopores
TiO2 nanocrystals
Infrared
Growth mechanism
Optical band gap
description In this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO2) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO2 nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO2 nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO2 nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO2 nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO2-SBA mesoporous. UV-vis spectra revealed a dependence of the optical band gap energy (E-gap) with the decreasing of Si/Ti molar ratios. (C) 2016 Elsevier B.V. All rights reserved.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-15
2018-11-27T21:47:42Z
2018-11-27T21:47:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.apsusc.2016.08.018
Applied Surface Science. Amsterdam: Elsevier Science Bv, v. 389, p. 1137-1147, 2016.
0169-4332
http://hdl.handle.net/11449/165328
10.1016/j.apsusc.2016.08.018
WOS:000384577600139
WOS000384577600139.pdf
url http://dx.doi.org/10.1016/j.apsusc.2016.08.018
http://hdl.handle.net/11449/165328
identifier_str_mv Applied Surface Science. Amsterdam: Elsevier Science Bv, v. 389, p. 1137-1147, 2016.
0169-4332
10.1016/j.apsusc.2016.08.018
WOS:000384577600139
WOS000384577600139.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Surface Science
1,093
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1137-1147
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129203835502592