Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.apsusc.2016.08.018 http://hdl.handle.net/11449/165328 |
Resumo: | In this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO2) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO2 nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO2 nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO2 nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO2 nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO2-SBA mesoporous. UV-vis spectra revealed a dependence of the optical band gap energy (E-gap) with the decreasing of Si/Ti molar ratios. (C) 2016 Elsevier B.V. All rights reserved. |
id |
UNSP_653dee2bb5fa7879e7accbefd6555acc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/165328 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behaviorSBA-15 mesoporesTiO2 nanocrystalsInfraredGrowth mechanismOptical band gapIn this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO2) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO2 nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO2 nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO2 nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO2 nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO2-SBA mesoporous. UV-vis spectra revealed a dependence of the optical band gap energy (E-gap) with the decreasing of Si/Ti molar ratios. (C) 2016 Elsevier B.V. All rights reserved.LIMAV-UFPIIFPIUERNConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Piaui, PPGQ GERATEC CCN DQ, Joao Cabral,2231,POB 381, BR-64002150 Teresina, PI, BrazilUniv Fed Piaui UFPI, DQ, BR-64049550 Teresina, PI, BrazilCDMF Univ Estadual Paulista, POB 355, BR-14801907 Araraquara, SP, BrazilUniv Estado Rio Grande do Norte, Dept Ciencias Nat, Mossoro, RN, BrazilCDMF Univ Estadual Paulista, POB 355, BR-14801907 Araraquara, SP, BrazilCNPq: 307559/2015-7CNPq: 350711/2012-7CNPq: 479644/2012-8CNPq: 455864/2014-4FAPESP: 12/14004-5FAPESP: 13/07296-2CAPES: 33001014005P5CAPES: 20131475Elsevier B.V.Univ Estadual PiauiUniv Fed Piaui UFPIUniversidade Estadual Paulista (Unesp)Univ Estado Rio Grande do NorteAraujo, M. M.Silva, L. K. R.Sczancoski, J. C. [UNESP]Orlandi, M. O. [UNESP]Longo, E. [UNESP]Santos, A. G. D.Sa, J. L. S.Santos, R. S.Luz, G. E.Cavalcante, L. S.2018-11-27T21:47:42Z2018-11-27T21:47:42Z2016-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1137-1147application/pdfhttp://dx.doi.org/10.1016/j.apsusc.2016.08.018Applied Surface Science. Amsterdam: Elsevier Science Bv, v. 389, p. 1137-1147, 2016.0169-4332http://hdl.handle.net/11449/16532810.1016/j.apsusc.2016.08.018WOS:000384577600139WOS000384577600139.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Surface Science1,093info:eu-repo/semantics/openAccess2023-12-15T06:22:18Zoai:repositorio.unesp.br:11449/165328Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:27:09.330310Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior |
title |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior |
spellingShingle |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior Araujo, M. M. SBA-15 mesopores TiO2 nanocrystals Infrared Growth mechanism Optical band gap |
title_short |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior |
title_full |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior |
title_fullStr |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior |
title_full_unstemmed |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior |
title_sort |
Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior |
author |
Araujo, M. M. |
author_facet |
Araujo, M. M. Silva, L. K. R. Sczancoski, J. C. [UNESP] Orlandi, M. O. [UNESP] Longo, E. [UNESP] Santos, A. G. D. Sa, J. L. S. Santos, R. S. Luz, G. E. Cavalcante, L. S. |
author_role |
author |
author2 |
Silva, L. K. R. Sczancoski, J. C. [UNESP] Orlandi, M. O. [UNESP] Longo, E. [UNESP] Santos, A. G. D. Sa, J. L. S. Santos, R. S. Luz, G. E. Cavalcante, L. S. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Univ Estadual Piaui Univ Fed Piaui UFPI Universidade Estadual Paulista (Unesp) Univ Estado Rio Grande do Norte |
dc.contributor.author.fl_str_mv |
Araujo, M. M. Silva, L. K. R. Sczancoski, J. C. [UNESP] Orlandi, M. O. [UNESP] Longo, E. [UNESP] Santos, A. G. D. Sa, J. L. S. Santos, R. S. Luz, G. E. Cavalcante, L. S. |
dc.subject.por.fl_str_mv |
SBA-15 mesopores TiO2 nanocrystals Infrared Growth mechanism Optical band gap |
topic |
SBA-15 mesopores TiO2 nanocrystals Infrared Growth mechanism Optical band gap |
description |
In this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO2) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO2 nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO2 nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO2 nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO2 nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO2-SBA mesoporous. UV-vis spectra revealed a dependence of the optical band gap energy (E-gap) with the decreasing of Si/Ti molar ratios. (C) 2016 Elsevier B.V. All rights reserved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-15 2018-11-27T21:47:42Z 2018-11-27T21:47:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.apsusc.2016.08.018 Applied Surface Science. Amsterdam: Elsevier Science Bv, v. 389, p. 1137-1147, 2016. 0169-4332 http://hdl.handle.net/11449/165328 10.1016/j.apsusc.2016.08.018 WOS:000384577600139 WOS000384577600139.pdf |
url |
http://dx.doi.org/10.1016/j.apsusc.2016.08.018 http://hdl.handle.net/11449/165328 |
identifier_str_mv |
Applied Surface Science. Amsterdam: Elsevier Science Bv, v. 389, p. 1137-1147, 2016. 0169-4332 10.1016/j.apsusc.2016.08.018 WOS:000384577600139 WOS000384577600139.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Surface Science 1,093 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1137-1147 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129203835502592 |