Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization

Detalhes bibliográficos
Autor(a) principal: Roder, Mateus [UNESP]
Data de Publicação: 2020
Outros Autores: Rosa, Gustavo Henrique de [UNESP], Papa, Joao Paulo [UNESP], Breve, Fabricio Aparecido [UNESP], IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/218678
Resumo: Restricted Boltzmann Machines (RBM) are stochastic neural networks mainly used for image reconstruction and unsupervised feature learning. An enhanced version, the temperature-based RBM (T-RBM), considers a new temperature parameter during the learning process that influences the neurons' activation. Nevertheless, the major vulnerability of such models concerns selecting an adequate system's temperature, which might lead them to inadequate training or even overfitting when wrongly set, thus limiting the network from predicting or working effectively over unseen data. This paper addresses the problem of selecting a suitable system's temperature through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Particle Swarm Optimization, Bat Algorithm, and Artificial Bee Colony are employed to find proper values for the temperature parameter. Additionally, for comparison purposes, three standard temperature values and a random search are used as baselines. The results revealed that optimizing T-RBM is suitable for training purposes, primarily due to their complex fitness landscape, which makes fine-tuning temperatures a non-trivial task.
id UNSP_adff6475b6b9429d6531f2f5a28e0d7c
oai_identifier_str oai:repositorio.unesp.br:11449/218678
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic OptimizationImage ReconstructionRestricted Boltzmann MachineTemperature-based SystemsMeta-Heuristic OptimizationRestricted Boltzmann Machines (RBM) are stochastic neural networks mainly used for image reconstruction and unsupervised feature learning. An enhanced version, the temperature-based RBM (T-RBM), considers a new temperature parameter during the learning process that influences the neurons' activation. Nevertheless, the major vulnerability of such models concerns selecting an adequate system's temperature, which might lead them to inadequate training or even overfitting when wrongly set, thus limiting the network from predicting or working effectively over unseen data. This paper addresses the problem of selecting a suitable system's temperature through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Particle Swarm Optimization, Bat Algorithm, and Artificial Bee Colony are employed to find proper values for the temperature parameter. Additionally, for comparison purposes, three standard temperature values and a random search are used as baselines. The results revealed that optimizing T-RBM is suitable for training purposes, primarily due to their complex fitness landscape, which makes fine-tuning temperatures a non-trivial task.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSao Paulo State Univ, Dept Math Stat & Comp, Rio Claro, SP, BrazilUNESP Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSao Paulo State Univ, Dept Math Stat & Comp, Rio Claro, SP, BrazilFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2017/25908-6FAPESP: 2019/02205-5FAPESP: 2019/07825-1CNPq: 307066/2017-7CNPq: 427968/2018-6IeeeUniversidade Estadual Paulista (UNESP)Roder, Mateus [UNESP]Rosa, Gustavo Henrique de [UNESP]Papa, Joao Paulo [UNESP]Breve, Fabricio Aparecido [UNESP]IEEE2022-04-28T17:22:29Z2022-04-28T17:22:29Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject82020 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, 8 p., 2020.http://hdl.handle.net/11449/218678WOS:000703998200017Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2020 Ieee Congress On Evolutionary Computation (cec)info:eu-repo/semantics/openAccess2024-04-23T16:11:12Zoai:repositorio.unesp.br:11449/218678Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:11:44.619207Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
title Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
spellingShingle Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
Roder, Mateus [UNESP]
Image Reconstruction
Restricted Boltzmann Machine
Temperature-based Systems
Meta-Heuristic Optimization
title_short Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
title_full Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
title_fullStr Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
title_full_unstemmed Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
title_sort Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
author Roder, Mateus [UNESP]
author_facet Roder, Mateus [UNESP]
Rosa, Gustavo Henrique de [UNESP]
Papa, Joao Paulo [UNESP]
Breve, Fabricio Aparecido [UNESP]
IEEE
author_role author
author2 Rosa, Gustavo Henrique de [UNESP]
Papa, Joao Paulo [UNESP]
Breve, Fabricio Aparecido [UNESP]
IEEE
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Roder, Mateus [UNESP]
Rosa, Gustavo Henrique de [UNESP]
Papa, Joao Paulo [UNESP]
Breve, Fabricio Aparecido [UNESP]
IEEE
dc.subject.por.fl_str_mv Image Reconstruction
Restricted Boltzmann Machine
Temperature-based Systems
Meta-Heuristic Optimization
topic Image Reconstruction
Restricted Boltzmann Machine
Temperature-based Systems
Meta-Heuristic Optimization
description Restricted Boltzmann Machines (RBM) are stochastic neural networks mainly used for image reconstruction and unsupervised feature learning. An enhanced version, the temperature-based RBM (T-RBM), considers a new temperature parameter during the learning process that influences the neurons' activation. Nevertheless, the major vulnerability of such models concerns selecting an adequate system's temperature, which might lead them to inadequate training or even overfitting when wrongly set, thus limiting the network from predicting or working effectively over unseen data. This paper addresses the problem of selecting a suitable system's temperature through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Particle Swarm Optimization, Bat Algorithm, and Artificial Bee Colony are employed to find proper values for the temperature parameter. Additionally, for comparison purposes, three standard temperature values and a random search are used as baselines. The results revealed that optimizing T-RBM is suitable for training purposes, primarily due to their complex fitness landscape, which makes fine-tuning temperatures a non-trivial task.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2022-04-28T17:22:29Z
2022-04-28T17:22:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2020 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, 8 p., 2020.
http://hdl.handle.net/11449/218678
WOS:000703998200017
identifier_str_mv 2020 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, 8 p., 2020.
WOS:000703998200017
url http://hdl.handle.net/11449/218678
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2020 Ieee Congress On Evolutionary Computation (cec)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 8
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128477980786688