Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/218678 |
Resumo: | Restricted Boltzmann Machines (RBM) are stochastic neural networks mainly used for image reconstruction and unsupervised feature learning. An enhanced version, the temperature-based RBM (T-RBM), considers a new temperature parameter during the learning process that influences the neurons' activation. Nevertheless, the major vulnerability of such models concerns selecting an adequate system's temperature, which might lead them to inadequate training or even overfitting when wrongly set, thus limiting the network from predicting or working effectively over unseen data. This paper addresses the problem of selecting a suitable system's temperature through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Particle Swarm Optimization, Bat Algorithm, and Artificial Bee Colony are employed to find proper values for the temperature parameter. Additionally, for comparison purposes, three standard temperature values and a random search are used as baselines. The results revealed that optimizing T-RBM is suitable for training purposes, primarily due to their complex fitness landscape, which makes fine-tuning temperatures a non-trivial task. |
id |
UNSP_adff6475b6b9429d6531f2f5a28e0d7c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/218678 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic OptimizationImage ReconstructionRestricted Boltzmann MachineTemperature-based SystemsMeta-Heuristic OptimizationRestricted Boltzmann Machines (RBM) are stochastic neural networks mainly used for image reconstruction and unsupervised feature learning. An enhanced version, the temperature-based RBM (T-RBM), considers a new temperature parameter during the learning process that influences the neurons' activation. Nevertheless, the major vulnerability of such models concerns selecting an adequate system's temperature, which might lead them to inadequate training or even overfitting when wrongly set, thus limiting the network from predicting or working effectively over unseen data. This paper addresses the problem of selecting a suitable system's temperature through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Particle Swarm Optimization, Bat Algorithm, and Artificial Bee Colony are employed to find proper values for the temperature parameter. Additionally, for comparison purposes, three standard temperature values and a random search are used as baselines. The results revealed that optimizing T-RBM is suitable for training purposes, primarily due to their complex fitness landscape, which makes fine-tuning temperatures a non-trivial task.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSao Paulo State Univ, Dept Math Stat & Comp, Rio Claro, SP, BrazilUNESP Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSao Paulo State Univ, Dept Math Stat & Comp, Rio Claro, SP, BrazilFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2017/25908-6FAPESP: 2019/02205-5FAPESP: 2019/07825-1CNPq: 307066/2017-7CNPq: 427968/2018-6IeeeUniversidade Estadual Paulista (UNESP)Roder, Mateus [UNESP]Rosa, Gustavo Henrique de [UNESP]Papa, Joao Paulo [UNESP]Breve, Fabricio Aparecido [UNESP]IEEE2022-04-28T17:22:29Z2022-04-28T17:22:29Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject82020 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, 8 p., 2020.http://hdl.handle.net/11449/218678WOS:000703998200017Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2020 Ieee Congress On Evolutionary Computation (cec)info:eu-repo/semantics/openAccess2024-04-23T16:11:12Zoai:repositorio.unesp.br:11449/218678Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:11:44.619207Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization |
title |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization |
spellingShingle |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization Roder, Mateus [UNESP] Image Reconstruction Restricted Boltzmann Machine Temperature-based Systems Meta-Heuristic Optimization |
title_short |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization |
title_full |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization |
title_fullStr |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization |
title_full_unstemmed |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization |
title_sort |
Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization |
author |
Roder, Mateus [UNESP] |
author_facet |
Roder, Mateus [UNESP] Rosa, Gustavo Henrique de [UNESP] Papa, Joao Paulo [UNESP] Breve, Fabricio Aparecido [UNESP] IEEE |
author_role |
author |
author2 |
Rosa, Gustavo Henrique de [UNESP] Papa, Joao Paulo [UNESP] Breve, Fabricio Aparecido [UNESP] IEEE |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Roder, Mateus [UNESP] Rosa, Gustavo Henrique de [UNESP] Papa, Joao Paulo [UNESP] Breve, Fabricio Aparecido [UNESP] IEEE |
dc.subject.por.fl_str_mv |
Image Reconstruction Restricted Boltzmann Machine Temperature-based Systems Meta-Heuristic Optimization |
topic |
Image Reconstruction Restricted Boltzmann Machine Temperature-based Systems Meta-Heuristic Optimization |
description |
Restricted Boltzmann Machines (RBM) are stochastic neural networks mainly used for image reconstruction and unsupervised feature learning. An enhanced version, the temperature-based RBM (T-RBM), considers a new temperature parameter during the learning process that influences the neurons' activation. Nevertheless, the major vulnerability of such models concerns selecting an adequate system's temperature, which might lead them to inadequate training or even overfitting when wrongly set, thus limiting the network from predicting or working effectively over unseen data. This paper addresses the problem of selecting a suitable system's temperature through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Particle Swarm Optimization, Bat Algorithm, and Artificial Bee Colony are employed to find proper values for the temperature parameter. Additionally, for comparison purposes, three standard temperature values and a random search are used as baselines. The results revealed that optimizing T-RBM is suitable for training purposes, primarily due to their complex fitness landscape, which makes fine-tuning temperatures a non-trivial task. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2022-04-28T17:22:29Z 2022-04-28T17:22:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2020 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, 8 p., 2020. http://hdl.handle.net/11449/218678 WOS:000703998200017 |
identifier_str_mv |
2020 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, 8 p., 2020. WOS:000703998200017 |
url |
http://hdl.handle.net/11449/218678 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2020 Ieee Congress On Evolutionary Computation (cec) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128477980786688 |