Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches

Detalhes bibliográficos
Autor(a) principal: Passos, Leandro A.
Data de Publicação: 2018
Outros Autores: Rodrigues, Douglas R., Papa, Joao P. [UNESP], IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/186246
Resumo: The Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction.
id UNSP_e623adeb214abbbf360843a6c6f87510
oai_identifier_str oai:repositorio.unesp.br:11449/186246
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic ApproachesDeep LearningDeep Boltzmann MachinesMeta-heuristic OptimizationThe Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Carlos, UFSCAR, Dept Comp, Sao Carlos, SP, BrazilSao Paulo State Univ, UNESP, Sch Sci, Bauru, BrazilSao Paulo State Univ, UNESP, Sch Sci, Bauru, BrazilCNPq: 306166/2014-3CNPq: 307066/2017-7BlzFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2016/19403-6IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Passos, Leandro A.Rodrigues, Douglas R.Papa, Joao P. [UNESP]IEEE2019-10-04T13:42:58Z2019-10-04T13:42:58Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject419-4242018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018.http://hdl.handle.net/11449/186246WOS:000448144200073Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/186246Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:30:17.219677Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
title Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
spellingShingle Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
Passos, Leandro A.
Deep Learning
Deep Boltzmann Machines
Meta-heuristic Optimization
title_short Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
title_full Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
title_fullStr Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
title_full_unstemmed Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
title_sort Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
author Passos, Leandro A.
author_facet Passos, Leandro A.
Rodrigues, Douglas R.
Papa, Joao P. [UNESP]
IEEE
author_role author
author2 Rodrigues, Douglas R.
Papa, Joao P. [UNESP]
IEEE
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Passos, Leandro A.
Rodrigues, Douglas R.
Papa, Joao P. [UNESP]
IEEE
dc.subject.por.fl_str_mv Deep Learning
Deep Boltzmann Machines
Meta-heuristic Optimization
topic Deep Learning
Deep Boltzmann Machines
Meta-heuristic Optimization
description The Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
2019-10-04T13:42:58Z
2019-10-04T13:42:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018.
http://hdl.handle.net/11449/186246
WOS:000448144200073
identifier_str_mv 2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018.
WOS:000448144200073
url http://hdl.handle.net/11449/186246
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 419-424
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128662746169344