Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/186246 |
Resumo: | The Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction. |
id |
UNSP_e623adeb214abbbf360843a6c6f87510 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186246 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic ApproachesDeep LearningDeep Boltzmann MachinesMeta-heuristic OptimizationThe Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Carlos, UFSCAR, Dept Comp, Sao Carlos, SP, BrazilSao Paulo State Univ, UNESP, Sch Sci, Bauru, BrazilSao Paulo State Univ, UNESP, Sch Sci, Bauru, BrazilCNPq: 306166/2014-3CNPq: 307066/2017-7BlzFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2016/19403-6IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Passos, Leandro A.Rodrigues, Douglas R.Papa, Joao P. [UNESP]IEEE2019-10-04T13:42:58Z2019-10-04T13:42:58Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject419-4242018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018.http://hdl.handle.net/11449/186246WOS:000448144200073Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/186246Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:30:17.219677Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches |
title |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches |
spellingShingle |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches Passos, Leandro A. Deep Learning Deep Boltzmann Machines Meta-heuristic Optimization |
title_short |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches |
title_full |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches |
title_fullStr |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches |
title_full_unstemmed |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches |
title_sort |
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches |
author |
Passos, Leandro A. |
author_facet |
Passos, Leandro A. Rodrigues, Douglas R. Papa, Joao P. [UNESP] IEEE |
author_role |
author |
author2 |
Rodrigues, Douglas R. Papa, Joao P. [UNESP] IEEE |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Passos, Leandro A. Rodrigues, Douglas R. Papa, Joao P. [UNESP] IEEE |
dc.subject.por.fl_str_mv |
Deep Learning Deep Boltzmann Machines Meta-heuristic Optimization |
topic |
Deep Learning Deep Boltzmann Machines Meta-heuristic Optimization |
description |
The Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2019-10-04T13:42:58Z 2019-10-04T13:42:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018. http://hdl.handle.net/11449/186246 WOS:000448144200073 |
identifier_str_mv |
2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018. WOS:000448144200073 |
url |
http://hdl.handle.net/11449/186246 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
419-424 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128662746169344 |