Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.dsp.2021.103158 http://hdl.handle.net/11449/231475 |
Resumo: | This article introduces the Discrete Path Transform (DPT). Designed to serve as a new tool for handcraft feature extraction (FE), it improves the elementary analysis provided by signal energy (E) and enhances the humble spectral investigation granted by zero-crossing rates (ZCRs). C/C++ source-codes to realize both the DPT direct and inverse (IDPT) forms are presented together with a few hypothetical numerical examples and an application involving general signal analysis, artefact removal from biomedical signals, and spoken word recognition (SWR), thus demonstrating how useful and effective the proposed transform is. Brief comparisons with Teager Energy Operator (TEO) and a list of important references were also included. |
id |
UNSP_ae9e80607720121344713ac826e3d0a6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/231475 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognitionArtefact removalFeature extraction (FE)Pattern recognition (PR)Signal energy (e)Spoken word recognition (SWR)Zero-crossing rate (ZCR)This article introduces the Discrete Path Transform (DPT). Designed to serve as a new tool for handcraft feature extraction (FE), it improves the elementary analysis provided by signal energy (E) and enhances the humble spectral investigation granted by zero-crossing rates (ZCRs). C/C++ source-codes to realize both the DPT direct and inverse (IDPT) forms are presented together with a few hypothetical numerical examples and an application involving general signal analysis, artefact removal from biomedical signals, and spoken word recognition (SWR), thus demonstrating how useful and effective the proposed transform is. Brief comparisons with Teager Energy Operator (TEO) and a list of important references were also included.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd NazarethCentro Estadual de Educação Tecnológica Paula Souza (CEETEPS)Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo (ICMC/USP), Av Trabalhador SãoCarlense 400Department of Biological Geological and Environmental Sciences (BIGeA) University of Bologna, Via Zamboni 33Instituto Federal de Educação Ciência e Tecnologia de São Paulo, Avenida Jerônimo Figueira da Costa, 3014Faculdade de Tecnologia de São José do Rio Preto, Rua Fernandópolis, 2510Instituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd NazarethFAPESP: 2019/04475-0CNPq: 306808/2018-8Universidade Estadual Paulista (UNESP)Centro Estadual de Educação Tecnológica Paula Souza (CEETEPS)Universidade de São Paulo (USP)University of BolognaCiência e Tecnologia de São PauloFaculdade de Tecnologia de São José do Rio PretoGuido, Rodrigo Capobianco [UNESP]Pedroso, Fernando [UNESP]Contreras, Rodrigo Colnago [UNESP]Rodrigues, Luciene Cavalcanti [UNESP]Guariglia, Emanuel [UNESP]Neto, Jogi Suda [UNESP]2022-04-29T08:45:35Z2022-04-29T08:45:35Z2021-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.dsp.2021.103158Digital Signal Processing: A Review Journal, v. 117.1051-2004http://hdl.handle.net/11449/23147510.1016/j.dsp.2021.1031582-s2.0-85109965962Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengDigital Signal Processing: A Review Journalinfo:eu-repo/semantics/openAccess2022-04-29T08:45:35Zoai:repositorio.unesp.br:11449/231475Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:33:45.767057Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition |
title |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition |
spellingShingle |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition Guido, Rodrigo Capobianco [UNESP] Artefact removal Feature extraction (FE) Pattern recognition (PR) Signal energy (e) Spoken word recognition (SWR) Zero-crossing rate (ZCR) |
title_short |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition |
title_full |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition |
title_fullStr |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition |
title_full_unstemmed |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition |
title_sort |
Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition |
author |
Guido, Rodrigo Capobianco [UNESP] |
author_facet |
Guido, Rodrigo Capobianco [UNESP] Pedroso, Fernando [UNESP] Contreras, Rodrigo Colnago [UNESP] Rodrigues, Luciene Cavalcanti [UNESP] Guariglia, Emanuel [UNESP] Neto, Jogi Suda [UNESP] |
author_role |
author |
author2 |
Pedroso, Fernando [UNESP] Contreras, Rodrigo Colnago [UNESP] Rodrigues, Luciene Cavalcanti [UNESP] Guariglia, Emanuel [UNESP] Neto, Jogi Suda [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Centro Estadual de Educação Tecnológica Paula Souza (CEETEPS) Universidade de São Paulo (USP) University of Bologna Ciência e Tecnologia de São Paulo Faculdade de Tecnologia de São José do Rio Preto |
dc.contributor.author.fl_str_mv |
Guido, Rodrigo Capobianco [UNESP] Pedroso, Fernando [UNESP] Contreras, Rodrigo Colnago [UNESP] Rodrigues, Luciene Cavalcanti [UNESP] Guariglia, Emanuel [UNESP] Neto, Jogi Suda [UNESP] |
dc.subject.por.fl_str_mv |
Artefact removal Feature extraction (FE) Pattern recognition (PR) Signal energy (e) Spoken word recognition (SWR) Zero-crossing rate (ZCR) |
topic |
Artefact removal Feature extraction (FE) Pattern recognition (PR) Signal energy (e) Spoken word recognition (SWR) Zero-crossing rate (ZCR) |
description |
This article introduces the Discrete Path Transform (DPT). Designed to serve as a new tool for handcraft feature extraction (FE), it improves the elementary analysis provided by signal energy (E) and enhances the humble spectral investigation granted by zero-crossing rates (ZCRs). C/C++ source-codes to realize both the DPT direct and inverse (IDPT) forms are presented together with a few hypothetical numerical examples and an application involving general signal analysis, artefact removal from biomedical signals, and spoken word recognition (SWR), thus demonstrating how useful and effective the proposed transform is. Brief comparisons with Teager Energy Operator (TEO) and a list of important references were also included. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-01 2022-04-29T08:45:35Z 2022-04-29T08:45:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.dsp.2021.103158 Digital Signal Processing: A Review Journal, v. 117. 1051-2004 http://hdl.handle.net/11449/231475 10.1016/j.dsp.2021.103158 2-s2.0-85109965962 |
url |
http://dx.doi.org/10.1016/j.dsp.2021.103158 http://hdl.handle.net/11449/231475 |
identifier_str_mv |
Digital Signal Processing: A Review Journal, v. 117. 1051-2004 10.1016/j.dsp.2021.103158 2-s2.0-85109965962 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Digital Signal Processing: A Review Journal |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128826974142464 |