Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1002/adom.202001178 http://hdl.handle.net/11449/208024 |
Resumo: | Near-infrared (NIR) nanothermometers are sought after in biomedicine when it comes to measuring temperatures subcutaneously. Yet, temperature sensing within the third biological imaging window (BW-III), where the highest contrast images can be obtained, remains relatively unexplored. Here, LiErF4/LiYF4 rare-earth nanoparticles (RENPs) are studied as NIR nanothermometers in the BW-III. Under 793 nm excitation, LiErF4/LiYF4RENPs emit around 1540 nm, corresponding to the 4I13/2 → 4I15/2radiative transition of Er3+. The fine Stark structure of this transition allows to delineate intensity regions within the emission band that can be used for single-band ratiometric nanothermometry. These nanothermometers have a relative temperature sensitivity of ≈0.40% °C−1. The temperature-dependent energy transfer to the surrounding solvent molecules plays a significant role in the thermometric properties of the RENPs. In addition, Ce3+ions are doped in the core of the RENPs to examine whether it affects the NIR emission and temperature sensitivity. Ce3+ at 1 mol% marginally influences the downshifting emission intensity of the RENPs, yet increases the relative thermal sensitivity to ≈0.45% °C−1. Furthermore, Ce3+ quenches the visible upconversion emission of the RENPs. Together, LiErF4:Ce3+/LiYF4RENPs enable single-band photoluminescence nanothermometry in the BW-III, with the future possibility of its integration within multifunctional decoupled theranostic nanostructures. |
id |
UNSP_af7a7899c5334901899caef106ad1746 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/208024 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitationsbiological windowsLiErF 4nanothermometrynear-infrared emissionrare-earth nanoparticlesupconversionNear-infrared (NIR) nanothermometers are sought after in biomedicine when it comes to measuring temperatures subcutaneously. Yet, temperature sensing within the third biological imaging window (BW-III), where the highest contrast images can be obtained, remains relatively unexplored. Here, LiErF4/LiYF4 rare-earth nanoparticles (RENPs) are studied as NIR nanothermometers in the BW-III. Under 793 nm excitation, LiErF4/LiYF4RENPs emit around 1540 nm, corresponding to the 4I13/2 → 4I15/2radiative transition of Er3+. The fine Stark structure of this transition allows to delineate intensity regions within the emission band that can be used for single-band ratiometric nanothermometry. These nanothermometers have a relative temperature sensitivity of ≈0.40% °C−1. The temperature-dependent energy transfer to the surrounding solvent molecules plays a significant role in the thermometric properties of the RENPs. In addition, Ce3+ions are doped in the core of the RENPs to examine whether it affects the NIR emission and temperature sensitivity. Ce3+ at 1 mol% marginally influences the downshifting emission intensity of the RENPs, yet increases the relative thermal sensitivity to ≈0.45% °C−1. Furthermore, Ce3+ quenches the visible upconversion emission of the RENPs. Together, LiErF4:Ce3+/LiYF4RENPs enable single-band photoluminescence nanothermometry in the BW-III, with the future possibility of its integration within multifunctional decoupled theranostic nanostructures.Institut National de la Recherche Scientifique Centre Énergie Matériaux et Télécommunications Université du Québec, 1650 Boul. Lionel-BouletInstitute of Chemistry São Paulo State University—UNESPInstitute of Chemistry São Paulo State University—UNESPUniversité du QuébecUniversidade Estadual Paulista (Unesp)Hazra, ChanchalSkripka, ArtiomRibeiro, Sidney J. L. [UNESP]Vetrone, Fiorenzo2021-06-25T11:05:02Z2021-06-25T11:05:02Z2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1002/adom.202001178Advanced Optical Materials, v. 8, n. 23, 2020.2195-1071http://hdl.handle.net/11449/20802410.1002/adom.2020011782-s2.0-85092127580Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvanced Optical Materialsinfo:eu-repo/semantics/openAccess2021-10-22T20:36:29Zoai:repositorio.unesp.br:11449/208024Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:08:17.428455Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations |
title |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations |
spellingShingle |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations Hazra, Chanchal biological windows LiErF 4 nanothermometry near-infrared emission rare-earth nanoparticles upconversion |
title_short |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations |
title_full |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations |
title_fullStr |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations |
title_full_unstemmed |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations |
title_sort |
Erbium Single-Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations |
author |
Hazra, Chanchal |
author_facet |
Hazra, Chanchal Skripka, Artiom Ribeiro, Sidney J. L. [UNESP] Vetrone, Fiorenzo |
author_role |
author |
author2 |
Skripka, Artiom Ribeiro, Sidney J. L. [UNESP] Vetrone, Fiorenzo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Université du Québec Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Hazra, Chanchal Skripka, Artiom Ribeiro, Sidney J. L. [UNESP] Vetrone, Fiorenzo |
dc.subject.por.fl_str_mv |
biological windows LiErF 4 nanothermometry near-infrared emission rare-earth nanoparticles upconversion |
topic |
biological windows LiErF 4 nanothermometry near-infrared emission rare-earth nanoparticles upconversion |
description |
Near-infrared (NIR) nanothermometers are sought after in biomedicine when it comes to measuring temperatures subcutaneously. Yet, temperature sensing within the third biological imaging window (BW-III), where the highest contrast images can be obtained, remains relatively unexplored. Here, LiErF4/LiYF4 rare-earth nanoparticles (RENPs) are studied as NIR nanothermometers in the BW-III. Under 793 nm excitation, LiErF4/LiYF4RENPs emit around 1540 nm, corresponding to the 4I13/2 → 4I15/2radiative transition of Er3+. The fine Stark structure of this transition allows to delineate intensity regions within the emission band that can be used for single-band ratiometric nanothermometry. These nanothermometers have a relative temperature sensitivity of ≈0.40% °C−1. The temperature-dependent energy transfer to the surrounding solvent molecules plays a significant role in the thermometric properties of the RENPs. In addition, Ce3+ions are doped in the core of the RENPs to examine whether it affects the NIR emission and temperature sensitivity. Ce3+ at 1 mol% marginally influences the downshifting emission intensity of the RENPs, yet increases the relative thermal sensitivity to ≈0.45% °C−1. Furthermore, Ce3+ quenches the visible upconversion emission of the RENPs. Together, LiErF4:Ce3+/LiYF4RENPs enable single-band photoluminescence nanothermometry in the BW-III, with the future possibility of its integration within multifunctional decoupled theranostic nanostructures. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-01 2021-06-25T11:05:02Z 2021-06-25T11:05:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1002/adom.202001178 Advanced Optical Materials, v. 8, n. 23, 2020. 2195-1071 http://hdl.handle.net/11449/208024 10.1002/adom.202001178 2-s2.0-85092127580 |
url |
http://dx.doi.org/10.1002/adom.202001178 http://hdl.handle.net/11449/208024 |
identifier_str_mv |
Advanced Optical Materials, v. 8, n. 23, 2020. 2195-1071 10.1002/adom.202001178 2-s2.0-85092127580 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Advanced Optical Materials |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129588619902976 |