Locating invariant tori for a family of two-dimensional Hamiltonian mappings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physa.2011.06.040 http://hdl.handle.net/11449/72746 |
Resumo: | The location of invariant tori for a two-dimensional Hamiltonian mapping exhibiting mixed phase space is discussed. The phase space of the mapping shows a large chaotic sea surrounding periodic islands and limited by a set of invariant tori. Given the mapping considered is parameterised by an exponent γ in one of the dynamical variables, a connection with the standard mapping near a transition from local to global chaos is used to estimate the position of the invariant tori limiting the size of the chaotic sea for different values of the parameter γ. © 2011 Elsevier B.V. All rights reserved. |
id |
UNSP_af93ca52e9c05c5fa4b991da91c94597 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72746 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Locating invariant tori for a family of two-dimensional Hamiltonian mappingsChaosCritical exponentsScaling lawsChaotic seaCritical exponentDynamical variablesInvariant toriMixed phasePhase spacesHamiltoniansPhase space methodsTwo dimensionalMappingThe location of invariant tori for a two-dimensional Hamiltonian mapping exhibiting mixed phase space is discussed. The phase space of the mapping shows a large chaotic sea surrounding periodic islands and limited by a set of invariant tori. Given the mapping considered is parameterised by an exponent γ in one of the dynamical variables, a connection with the standard mapping near a transition from local to global chaos is used to estimate the position of the invariant tori limiting the size of the chaotic sea for different values of the parameter γ. © 2011 Elsevier B.V. All rights reserved.Departamento de Estatística Matemat. Apl. e ComputaoInstituto de Geociências e Ciências Exatas UNESP Univ Estadual Paulista, Av.24A, 1515Bela Vista, CEP: 13506-900 Rio Claro SPDepartamento de Estatística Matemat. Apl. e ComputaoInstituto de Geociências e Ciências Exatas UNESP Univ Estadual Paulista, Av.24A, 1515Bela Vista, CEP: 13506-900 Rio Claro SPUniversidade Estadual Paulista (Unesp)De Oliveira, Juliano A. [UNESP]Leonel, Edson D. [UNESP]2014-05-27T11:26:05Z2014-05-27T11:26:05Z2011-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3727-3731application/pdfhttp://dx.doi.org/10.1016/j.physa.2011.06.040Physica A: Statistical Mechanics and its Applications, v. 390, n. 21-22, p. 3727-3731, 2011.0378-4371http://hdl.handle.net/11449/7274610.1016/j.physa.2011.06.0402-s2.0-800549161822-s2.0-80054916182.pdf6130644232718610Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A: Statistical Mechanics and Its Applications2.1320,773info:eu-repo/semantics/openAccess2023-11-07T06:15:02Zoai:repositorio.unesp.br:11449/72746Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:06:39.087313Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Locating invariant tori for a family of two-dimensional Hamiltonian mappings |
title |
Locating invariant tori for a family of two-dimensional Hamiltonian mappings |
spellingShingle |
Locating invariant tori for a family of two-dimensional Hamiltonian mappings De Oliveira, Juliano A. [UNESP] Chaos Critical exponents Scaling laws Chaotic sea Critical exponent Dynamical variables Invariant tori Mixed phase Phase spaces Hamiltonians Phase space methods Two dimensional Mapping |
title_short |
Locating invariant tori for a family of two-dimensional Hamiltonian mappings |
title_full |
Locating invariant tori for a family of two-dimensional Hamiltonian mappings |
title_fullStr |
Locating invariant tori for a family of two-dimensional Hamiltonian mappings |
title_full_unstemmed |
Locating invariant tori for a family of two-dimensional Hamiltonian mappings |
title_sort |
Locating invariant tori for a family of two-dimensional Hamiltonian mappings |
author |
De Oliveira, Juliano A. [UNESP] |
author_facet |
De Oliveira, Juliano A. [UNESP] Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
Leonel, Edson D. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
De Oliveira, Juliano A. [UNESP] Leonel, Edson D. [UNESP] |
dc.subject.por.fl_str_mv |
Chaos Critical exponents Scaling laws Chaotic sea Critical exponent Dynamical variables Invariant tori Mixed phase Phase spaces Hamiltonians Phase space methods Two dimensional Mapping |
topic |
Chaos Critical exponents Scaling laws Chaotic sea Critical exponent Dynamical variables Invariant tori Mixed phase Phase spaces Hamiltonians Phase space methods Two dimensional Mapping |
description |
The location of invariant tori for a two-dimensional Hamiltonian mapping exhibiting mixed phase space is discussed. The phase space of the mapping shows a large chaotic sea surrounding periodic islands and limited by a set of invariant tori. Given the mapping considered is parameterised by an exponent γ in one of the dynamical variables, a connection with the standard mapping near a transition from local to global chaos is used to estimate the position of the invariant tori limiting the size of the chaotic sea for different values of the parameter γ. © 2011 Elsevier B.V. All rights reserved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10-15 2014-05-27T11:26:05Z 2014-05-27T11:26:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physa.2011.06.040 Physica A: Statistical Mechanics and its Applications, v. 390, n. 21-22, p. 3727-3731, 2011. 0378-4371 http://hdl.handle.net/11449/72746 10.1016/j.physa.2011.06.040 2-s2.0-80054916182 2-s2.0-80054916182.pdf 6130644232718610 |
url |
http://dx.doi.org/10.1016/j.physa.2011.06.040 http://hdl.handle.net/11449/72746 |
identifier_str_mv |
Physica A: Statistical Mechanics and its Applications, v. 390, n. 21-22, p. 3727-3731, 2011. 0378-4371 10.1016/j.physa.2011.06.040 2-s2.0-80054916182 2-s2.0-80054916182.pdf 6130644232718610 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica A: Statistical Mechanics and Its Applications 2.132 0,773 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3727-3731 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128757281587200 |