Lobatto deferred correction for stiff two-point boundary value problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/S0898-1221(98)80009-6 http://hdl.handle.net/11449/21747 |
Resumo: | An iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved. |
id |
UNSP_aff122a69f8b5a5e4ae28fa46e96f368 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/21747 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Lobatto deferred correction for stiff two-point boundary value problemsdeferred correctionLobatto formulaesymmetryTwo-point boundary value problemsAn iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved.Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, EnglandUNESP, IBILCE, Dept Ciências Computacao & Estatist, BR-15054000 Rio Preto, SP, BrazilUNESP, IBILCE, Dept Ciências Computacao & Estatist, BR-15054000 Rio Preto, SP, BrazilElsevier B.V.Univ London Imperial Coll Sci Technol & MedUniversidade Estadual Paulista (Unesp)Bashir-Ali, Z.Cash, JRSilva, HHM2014-05-20T14:01:37Z2014-05-20T14:01:37Z1998-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article59-69application/pdfhttp://dx.doi.org/10.1016/S0898-1221(98)80009-6Computers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V., v. 36, n. 10-12, p. 59-69, 1998.0898-1221http://hdl.handle.net/11449/2174710.1016/S0898-1221(98)80009-6WOS:000077561600007WOS000077561600007.pdf0229111130706571Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputers & Mathematics With Applications1.8601,058info:eu-repo/semantics/openAccess2024-01-26T06:35:08Zoai:repositorio.unesp.br:11449/21747Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:02:55.858313Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Lobatto deferred correction for stiff two-point boundary value problems |
title |
Lobatto deferred correction for stiff two-point boundary value problems |
spellingShingle |
Lobatto deferred correction for stiff two-point boundary value problems Bashir-Ali, Z. deferred correction Lobatto formulae symmetry Two-point boundary value problems |
title_short |
Lobatto deferred correction for stiff two-point boundary value problems |
title_full |
Lobatto deferred correction for stiff two-point boundary value problems |
title_fullStr |
Lobatto deferred correction for stiff two-point boundary value problems |
title_full_unstemmed |
Lobatto deferred correction for stiff two-point boundary value problems |
title_sort |
Lobatto deferred correction for stiff two-point boundary value problems |
author |
Bashir-Ali, Z. |
author_facet |
Bashir-Ali, Z. Cash, JR Silva, HHM |
author_role |
author |
author2 |
Cash, JR Silva, HHM |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Univ London Imperial Coll Sci Technol & Med Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Bashir-Ali, Z. Cash, JR Silva, HHM |
dc.subject.por.fl_str_mv |
deferred correction Lobatto formulae symmetry Two-point boundary value problems |
topic |
deferred correction Lobatto formulae symmetry Two-point boundary value problems |
description |
An iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-11-01 2014-05-20T14:01:37Z 2014-05-20T14:01:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/S0898-1221(98)80009-6 Computers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V., v. 36, n. 10-12, p. 59-69, 1998. 0898-1221 http://hdl.handle.net/11449/21747 10.1016/S0898-1221(98)80009-6 WOS:000077561600007 WOS000077561600007.pdf 0229111130706571 |
url |
http://dx.doi.org/10.1016/S0898-1221(98)80009-6 http://hdl.handle.net/11449/21747 |
identifier_str_mv |
Computers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V., v. 36, n. 10-12, p. 59-69, 1998. 0898-1221 10.1016/S0898-1221(98)80009-6 WOS:000077561600007 WOS000077561600007.pdf 0229111130706571 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computers & Mathematics With Applications 1.860 1,058 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
59-69 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129576644116480 |