Lobatto deferred correction for stiff two-point boundary value problems

Detalhes bibliográficos
Autor(a) principal: Bashir-Ali, Z.
Data de Publicação: 1998
Outros Autores: Cash, JR, Silva, HHM
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/S0898-1221(98)80009-6
http://hdl.handle.net/11449/21747
Resumo: An iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
id UNSP_aff122a69f8b5a5e4ae28fa46e96f368
oai_identifier_str oai:repositorio.unesp.br:11449/21747
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Lobatto deferred correction for stiff two-point boundary value problemsdeferred correctionLobatto formulaesymmetryTwo-point boundary value problemsAn iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved.Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, EnglandUNESP, IBILCE, Dept Ciências Computacao & Estatist, BR-15054000 Rio Preto, SP, BrazilUNESP, IBILCE, Dept Ciências Computacao & Estatist, BR-15054000 Rio Preto, SP, BrazilElsevier B.V.Univ London Imperial Coll Sci Technol & MedUniversidade Estadual Paulista (Unesp)Bashir-Ali, Z.Cash, JRSilva, HHM2014-05-20T14:01:37Z2014-05-20T14:01:37Z1998-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article59-69application/pdfhttp://dx.doi.org/10.1016/S0898-1221(98)80009-6Computers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V., v. 36, n. 10-12, p. 59-69, 1998.0898-1221http://hdl.handle.net/11449/2174710.1016/S0898-1221(98)80009-6WOS:000077561600007WOS000077561600007.pdf0229111130706571Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputers & Mathematics With Applications1.8601,058info:eu-repo/semantics/openAccess2024-01-26T06:35:08Zoai:repositorio.unesp.br:11449/21747Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:02:55.858313Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Lobatto deferred correction for stiff two-point boundary value problems
title Lobatto deferred correction for stiff two-point boundary value problems
spellingShingle Lobatto deferred correction for stiff two-point boundary value problems
Bashir-Ali, Z.
deferred correction
Lobatto formulae
symmetry
Two-point boundary value problems
title_short Lobatto deferred correction for stiff two-point boundary value problems
title_full Lobatto deferred correction for stiff two-point boundary value problems
title_fullStr Lobatto deferred correction for stiff two-point boundary value problems
title_full_unstemmed Lobatto deferred correction for stiff two-point boundary value problems
title_sort Lobatto deferred correction for stiff two-point boundary value problems
author Bashir-Ali, Z.
author_facet Bashir-Ali, Z.
Cash, JR
Silva, HHM
author_role author
author2 Cash, JR
Silva, HHM
author2_role author
author
dc.contributor.none.fl_str_mv Univ London Imperial Coll Sci Technol & Med
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Bashir-Ali, Z.
Cash, JR
Silva, HHM
dc.subject.por.fl_str_mv deferred correction
Lobatto formulae
symmetry
Two-point boundary value problems
topic deferred correction
Lobatto formulae
symmetry
Two-point boundary value problems
description An iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
publishDate 1998
dc.date.none.fl_str_mv 1998-11-01
2014-05-20T14:01:37Z
2014-05-20T14:01:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/S0898-1221(98)80009-6
Computers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V., v. 36, n. 10-12, p. 59-69, 1998.
0898-1221
http://hdl.handle.net/11449/21747
10.1016/S0898-1221(98)80009-6
WOS:000077561600007
WOS000077561600007.pdf
0229111130706571
url http://dx.doi.org/10.1016/S0898-1221(98)80009-6
http://hdl.handle.net/11449/21747
identifier_str_mv Computers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V., v. 36, n. 10-12, p. 59-69, 1998.
0898-1221
10.1016/S0898-1221(98)80009-6
WOS:000077561600007
WOS000077561600007.pdf
0229111130706571
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computers & Mathematics With Applications
1.860
1,058
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 59-69
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129576644116480