CombTEs: combining predictions from the search for transposable elements

Detalhes bibliográficos
Autor(a) principal: Fischer, Carlos Norberto [UNESP]
Data de Publicação: 2022
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1504/IJBRA.2022.128238
http://hdl.handle.net/11449/249646
Resumo: Several tools, using different approaches, are available nowadays to identify transposable elements (TEs) in a query sequence. Normally, a same set of TEs can be predicted by many of these tools. However, for other TEs, only a few tools are able to predict them due to their particular characteristics. In both cases, combining predictions produced by two or more tools can be an interesting approach to increasing the number of correct results and, at the same time, to further improve the confidence about the predicted TEs. Taking this into account, this work presents an auxiliary tool, CombTEs, that combines predictions produced by other programs and pipelines used to identify TEs in a genome sequence. The basic idea is that, after running only once the tools of interest, the same sets of initial predictions are used in several combining processes, each one considering different values for the parameters used by CombTEs (for example, filters and distance between predictions), in a very fast way, making the annotation step easier and more reliable.
id UNSP_b0e87e830add921b2fd69b1afdd1e663
oai_identifier_str oai:repositorio.unesp.br:11449/249646
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling CombTEs: combining predictions from the search for transposable elementsbioinformatics toolscombining predictionsLTR retrotransposonspHMMsprediction combinationprofile hidden Markov modelssimilarity methodtransposable element classificationtransposable element searchestransposable elementsSeveral tools, using different approaches, are available nowadays to identify transposable elements (TEs) in a query sequence. Normally, a same set of TEs can be predicted by many of these tools. However, for other TEs, only a few tools are able to predict them due to their particular characteristics. In both cases, combining predictions produced by two or more tools can be an interesting approach to increasing the number of correct results and, at the same time, to further improve the confidence about the predicted TEs. Taking this into account, this work presents an auxiliary tool, CombTEs, that combines predictions produced by other programs and pipelines used to identify TEs in a genome sequence. The basic idea is that, after running only once the tools of interest, the same sets of initial predictions are used in several combining processes, each one considering different values for the parameters used by CombTEs (for example, filters and distance between predictions), in a very fast way, making the annotation step easier and more reliable.Department of Statistics Applied Maths and Computer Science UNESP – São Paulo State University, SPDepartment of Statistics Applied Maths and Computer Science UNESP – São Paulo State University, SPUniversidade Estadual Paulista (UNESP)Fischer, Carlos Norberto [UNESP]2023-07-29T16:05:23Z2023-07-29T16:05:23Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article496-504http://dx.doi.org/10.1504/IJBRA.2022.128238International Journal of Bioinformatics Research and Applications, v. 18, n. 5, p. 496-504, 2022.1744-54931744-5485http://hdl.handle.net/11449/24964610.1504/IJBRA.2022.1282382-s2.0-85147819652Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Bioinformatics Research and Applicationsinfo:eu-repo/semantics/openAccess2023-07-29T16:05:23Zoai:repositorio.unesp.br:11449/249646Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:20:46.048003Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv CombTEs: combining predictions from the search for transposable elements
title CombTEs: combining predictions from the search for transposable elements
spellingShingle CombTEs: combining predictions from the search for transposable elements
Fischer, Carlos Norberto [UNESP]
bioinformatics tools
combining predictions
LTR retrotransposons
pHMMs
prediction combination
profile hidden Markov models
similarity method
transposable element classification
transposable element searches
transposable elements
title_short CombTEs: combining predictions from the search for transposable elements
title_full CombTEs: combining predictions from the search for transposable elements
title_fullStr CombTEs: combining predictions from the search for transposable elements
title_full_unstemmed CombTEs: combining predictions from the search for transposable elements
title_sort CombTEs: combining predictions from the search for transposable elements
author Fischer, Carlos Norberto [UNESP]
author_facet Fischer, Carlos Norberto [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Fischer, Carlos Norberto [UNESP]
dc.subject.por.fl_str_mv bioinformatics tools
combining predictions
LTR retrotransposons
pHMMs
prediction combination
profile hidden Markov models
similarity method
transposable element classification
transposable element searches
transposable elements
topic bioinformatics tools
combining predictions
LTR retrotransposons
pHMMs
prediction combination
profile hidden Markov models
similarity method
transposable element classification
transposable element searches
transposable elements
description Several tools, using different approaches, are available nowadays to identify transposable elements (TEs) in a query sequence. Normally, a same set of TEs can be predicted by many of these tools. However, for other TEs, only a few tools are able to predict them due to their particular characteristics. In both cases, combining predictions produced by two or more tools can be an interesting approach to increasing the number of correct results and, at the same time, to further improve the confidence about the predicted TEs. Taking this into account, this work presents an auxiliary tool, CombTEs, that combines predictions produced by other programs and pipelines used to identify TEs in a genome sequence. The basic idea is that, after running only once the tools of interest, the same sets of initial predictions are used in several combining processes, each one considering different values for the parameters used by CombTEs (for example, filters and distance between predictions), in a very fast way, making the annotation step easier and more reliable.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-07-29T16:05:23Z
2023-07-29T16:05:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1504/IJBRA.2022.128238
International Journal of Bioinformatics Research and Applications, v. 18, n. 5, p. 496-504, 2022.
1744-5493
1744-5485
http://hdl.handle.net/11449/249646
10.1504/IJBRA.2022.128238
2-s2.0-85147819652
url http://dx.doi.org/10.1504/IJBRA.2022.128238
http://hdl.handle.net/11449/249646
identifier_str_mv International Journal of Bioinformatics Research and Applications, v. 18, n. 5, p. 496-504, 2022.
1744-5493
1744-5485
10.1504/IJBRA.2022.128238
2-s2.0-85147819652
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Bioinformatics Research and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 496-504
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128923346665472