Neural approach for induction motor load torque identification in industrial applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/195894 |
Resumo: | Induction motors are widely used in several industrial sectors. However, the dimensioning of induction motors is often inaccurate because, in most cases, the load behavior in the shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for dimensioning induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since the proposed approach uses current, voltage and speed values as the only input parameters, one of its potentialities is related to the facility of hardware implementation for industrial environments and field applications. Simulation results are also presented to validate the proposed approach. |
id |
UNSP_b3c5478b632895ca5f9d644b86f2237f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/195894 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Neural approach for induction motor load torque identification in industrial applicationsInduction motors are widely used in several industrial sectors. However, the dimensioning of induction motors is often inaccurate because, in most cases, the load behavior in the shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for dimensioning induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since the proposed approach uses current, voltage and speed values as the only input parameters, one of its potentialities is related to the facility of hardware implementation for industrial environments and field applications. Simulation results are also presented to validate the proposed approach.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Sao Paulo, Dept Elect Engn, CP 359,Av Trabalhador Sancarlense 400, BR-13566590 Sao Carlos, SP, BrazilState Univ Sao Paulo, Elect Engn Dept, BR-17033360 Bauru, SP, BrazilState Univ Sao Paulo, Elect Engn Dept, BR-17033360 Bauru, SP, BrazilCNPq: 06/56093-3CNPq: 14236/2005-4IeeeUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Goedtel, AlessandroSilva, Ivan N. daSerni, Paulo J. A. [UNESP]IEEE2020-12-10T18:07:33Z2020-12-10T18:07:33Z2007-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1529-+Proceedings Of The 2007 Ieee Conference On Control Applications, Vols 1-3. New York: Ieee, p. 1529-+, 2007.1085-1992http://hdl.handle.net/11449/195894WOS:000253024000259Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The 2007 Ieee Conference On Control Applications, Vols 1-3info:eu-repo/semantics/openAccess2024-06-28T13:34:43Zoai:repositorio.unesp.br:11449/195894Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:57:57.807369Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Neural approach for induction motor load torque identification in industrial applications |
title |
Neural approach for induction motor load torque identification in industrial applications |
spellingShingle |
Neural approach for induction motor load torque identification in industrial applications Goedtel, Alessandro |
title_short |
Neural approach for induction motor load torque identification in industrial applications |
title_full |
Neural approach for induction motor load torque identification in industrial applications |
title_fullStr |
Neural approach for induction motor load torque identification in industrial applications |
title_full_unstemmed |
Neural approach for induction motor load torque identification in industrial applications |
title_sort |
Neural approach for induction motor load torque identification in industrial applications |
author |
Goedtel, Alessandro |
author_facet |
Goedtel, Alessandro Silva, Ivan N. da Serni, Paulo J. A. [UNESP] IEEE |
author_role |
author |
author2 |
Silva, Ivan N. da Serni, Paulo J. A. [UNESP] IEEE |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Goedtel, Alessandro Silva, Ivan N. da Serni, Paulo J. A. [UNESP] IEEE |
description |
Induction motors are widely used in several industrial sectors. However, the dimensioning of induction motors is often inaccurate because, in most cases, the load behavior in the shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for dimensioning induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since the proposed approach uses current, voltage and speed values as the only input parameters, one of its potentialities is related to the facility of hardware implementation for industrial environments and field applications. Simulation results are also presented to validate the proposed approach. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 2020-12-10T18:07:33Z 2020-12-10T18:07:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Proceedings Of The 2007 Ieee Conference On Control Applications, Vols 1-3. New York: Ieee, p. 1529-+, 2007. 1085-1992 http://hdl.handle.net/11449/195894 WOS:000253024000259 |
identifier_str_mv |
Proceedings Of The 2007 Ieee Conference On Control Applications, Vols 1-3. New York: Ieee, p. 1529-+, 2007. 1085-1992 WOS:000253024000259 |
url |
http://hdl.handle.net/11449/195894 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings Of The 2007 Ieee Conference On Control Applications, Vols 1-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1529-+ |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129567386238976 |