On the determination of epsilon during discriminative GMM training

Detalhes bibliográficos
Autor(a) principal: Guido, Rodrigo Capobianco [UNESP]
Data de Publicação: 2010
Outros Autores: Chen, Shi-Huang [UNESP], Junior, Sylvio Barbon [UNESP], Souza, Leonardo Mendes [UNESP], Vieira, Lucimar Sasso [UNESP], Rodrigues, Luciene Cavalcanti [UNESP], Escola, Joao Paulo Lemos [UNESP], Zulato, Paulo Ricardo Franchi [UNESP], Lacerda, Michel Alves [UNESP], Ribeiro, Jussara [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ISM.2010.66
http://hdl.handle.net/11449/72054
Resumo: Discriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, ε, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine ε, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm. © 2010 IEEE.
id UNSP_b4293691ab633e41fff1c89b6c28e33d
oai_identifier_str oai:repositorio.unesp.br:11449/72054
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the determination of epsilon during discriminative GMM trainingDiscriminative training of Gaussian Mixture Models (GMMs)Markov ModelsSpeaker identificationSpeech recognitionDiscriminative trainingGaussian mixture modelsGradient descent algorithmsGradient Descent methodIteration stepNewton-Raphson iterative methodSecond ordersSpeaker recognitionGaussian distributionIterative methodsLoudspeakersMarkov processesDiscriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, ε, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine ε, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm. © 2010 IEEE.SpeechLab. FFI, Institute of Physics at São Carlos University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SPDCCE/IBILCE/UNESP São Paulo State University, Rua Cristovão Colombo 2265, São José do Rio Preto, SPDepartment of Computer Science and Information Engineering Shu-Te University, N.59, Hengshan Rd., Yanchao, Kaohsiung County 82445DCCE/IBILCE/UNESP São Paulo State University, Rua Cristovão Colombo 2265, São José do Rio Preto, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Shu-Te UniversityGuido, Rodrigo Capobianco [UNESP]Chen, Shi-Huang [UNESP]Junior, Sylvio Barbon [UNESP]Souza, Leonardo Mendes [UNESP]Vieira, Lucimar Sasso [UNESP]Rodrigues, Luciene Cavalcanti [UNESP]Escola, Joao Paulo Lemos [UNESP]Zulato, Paulo Ricardo Franchi [UNESP]Lacerda, Michel Alves [UNESP]Ribeiro, Jussara [UNESP]2014-05-27T11:25:20Z2014-05-27T11:25:20Z2010-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject362-364http://dx.doi.org/10.1109/ISM.2010.66Proceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010, p. 362-364.http://hdl.handle.net/11449/7205410.1109/ISM.2010.662-s2.0-7995172800465420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010info:eu-repo/semantics/openAccess2021-10-23T21:37:54Zoai:repositorio.unesp.br:11449/72054Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:07:33.912397Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the determination of epsilon during discriminative GMM training
title On the determination of epsilon during discriminative GMM training
spellingShingle On the determination of epsilon during discriminative GMM training
Guido, Rodrigo Capobianco [UNESP]
Discriminative training of Gaussian Mixture Models (GMMs)
Markov Models
Speaker identification
Speech recognition
Discriminative training
Gaussian mixture models
Gradient descent algorithms
Gradient Descent method
Iteration step
Newton-Raphson iterative method
Second orders
Speaker recognition
Gaussian distribution
Iterative methods
Loudspeakers
Markov processes
title_short On the determination of epsilon during discriminative GMM training
title_full On the determination of epsilon during discriminative GMM training
title_fullStr On the determination of epsilon during discriminative GMM training
title_full_unstemmed On the determination of epsilon during discriminative GMM training
title_sort On the determination of epsilon during discriminative GMM training
author Guido, Rodrigo Capobianco [UNESP]
author_facet Guido, Rodrigo Capobianco [UNESP]
Chen, Shi-Huang [UNESP]
Junior, Sylvio Barbon [UNESP]
Souza, Leonardo Mendes [UNESP]
Vieira, Lucimar Sasso [UNESP]
Rodrigues, Luciene Cavalcanti [UNESP]
Escola, Joao Paulo Lemos [UNESP]
Zulato, Paulo Ricardo Franchi [UNESP]
Lacerda, Michel Alves [UNESP]
Ribeiro, Jussara [UNESP]
author_role author
author2 Chen, Shi-Huang [UNESP]
Junior, Sylvio Barbon [UNESP]
Souza, Leonardo Mendes [UNESP]
Vieira, Lucimar Sasso [UNESP]
Rodrigues, Luciene Cavalcanti [UNESP]
Escola, Joao Paulo Lemos [UNESP]
Zulato, Paulo Ricardo Franchi [UNESP]
Lacerda, Michel Alves [UNESP]
Ribeiro, Jussara [UNESP]
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Shu-Te University
dc.contributor.author.fl_str_mv Guido, Rodrigo Capobianco [UNESP]
Chen, Shi-Huang [UNESP]
Junior, Sylvio Barbon [UNESP]
Souza, Leonardo Mendes [UNESP]
Vieira, Lucimar Sasso [UNESP]
Rodrigues, Luciene Cavalcanti [UNESP]
Escola, Joao Paulo Lemos [UNESP]
Zulato, Paulo Ricardo Franchi [UNESP]
Lacerda, Michel Alves [UNESP]
Ribeiro, Jussara [UNESP]
dc.subject.por.fl_str_mv Discriminative training of Gaussian Mixture Models (GMMs)
Markov Models
Speaker identification
Speech recognition
Discriminative training
Gaussian mixture models
Gradient descent algorithms
Gradient Descent method
Iteration step
Newton-Raphson iterative method
Second orders
Speaker recognition
Gaussian distribution
Iterative methods
Loudspeakers
Markov processes
topic Discriminative training of Gaussian Mixture Models (GMMs)
Markov Models
Speaker identification
Speech recognition
Discriminative training
Gaussian mixture models
Gradient descent algorithms
Gradient Descent method
Iteration step
Newton-Raphson iterative method
Second orders
Speaker recognition
Gaussian distribution
Iterative methods
Loudspeakers
Markov processes
description Discriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, ε, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine ε, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm. © 2010 IEEE.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-01
2014-05-27T11:25:20Z
2014-05-27T11:25:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ISM.2010.66
Proceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010, p. 362-364.
http://hdl.handle.net/11449/72054
10.1109/ISM.2010.66
2-s2.0-79951728004
6542086226808067
0000-0002-0924-8024
url http://dx.doi.org/10.1109/ISM.2010.66
http://hdl.handle.net/11449/72054
identifier_str_mv Proceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010, p. 362-364.
10.1109/ISM.2010.66
2-s2.0-79951728004
6542086226808067
0000-0002-0924-8024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 362-364
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129162570891264