Spike sorting with Gaussian mixture models

Detalhes bibliográficos
Autor(a) principal: Souza, Bryan C.
Data de Publicação: 2019
Outros Autores: Lopes-dos-Santos, Vítor, Bacelo, João, Tort, Adriano Bretanha Lopes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/26757
Resumo: The shape of extracellularly recorded action potentials is a product of several variables, such as the biophysical and anatomical properties of the neuron and the relative position of the electrode. This allows isolating spikes of different neurons recorded in the same channel into clusters based on waveform features. However, correctly classifying spike waveforms into their underlying neuronal sources remains a challenge. This process, called spike sorting, typically consists of two steps: (1) extracting relevant waveform features (e.g., height, width), and (2) clustering them into non-overlapping groups believed to correspond to different neurons. In this study, we explored the performance of Gaussian mixture models (GMMs) in these two steps. We extracted relevant features using a combination of common techniques (e.g., principal components, wavelets) and GMM fitting parameters (e.g., Gaussian distances). Then, we developed an approach to perform unsupervised clustering using GMMs, estimating cluster properties in a data-driven way. We found the proposed GMM-based framework outperforms previously established methods in simulated and real extracellular recordings. We also discuss potentially better techniques for feature extraction than the widely used principal components. Finally, we provide a friendly graphical user interface to run our algorithm, which allows manual adjustments.
id UFRN_2e29fdecc93ccb34813f91e9028bb4b2
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/26757
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Souza, Bryan C.Lopes-dos-Santos, VítorBacelo, JoãoTort, Adriano Bretanha Lopes2019-03-13T16:53:34Z2019-03-13T16:53:34Z2019-03-06SOUZA, B. C. et al. Spike sorting with Gaussian mixture models. Sci Rep. v. 9, p. 3627, mar. 2019. Doi: 10.1038/s41598-019-39986-6https://repositorio.ufrn.br/jspui/handle/123456789/2675710.1038/s41598-019-39986-6spike sortingGaussian mixture modelscomputational neuroscienceSpike sorting with Gaussian mixture modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe shape of extracellularly recorded action potentials is a product of several variables, such as the biophysical and anatomical properties of the neuron and the relative position of the electrode. This allows isolating spikes of different neurons recorded in the same channel into clusters based on waveform features. However, correctly classifying spike waveforms into their underlying neuronal sources remains a challenge. This process, called spike sorting, typically consists of two steps: (1) extracting relevant waveform features (e.g., height, width), and (2) clustering them into non-overlapping groups believed to correspond to different neurons. In this study, we explored the performance of Gaussian mixture models (GMMs) in these two steps. We extracted relevant features using a combination of common techniques (e.g., principal components, wavelets) and GMM fitting parameters (e.g., Gaussian distances). Then, we developed an approach to perform unsupervised clustering using GMMs, estimating cluster properties in a data-driven way. We found the proposed GMM-based framework outperforms previously established methods in simulated and real extracellular recordings. We also discuss potentially better techniques for feature extraction than the widely used principal components. Finally, we provide a friendly graphical user interface to run our algorithm, which allows manual adjustments.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessTEXTAdrianoTort_ICe_2019_Spike sorting.pdf.txtAdrianoTort_ICe_2019_Spike sorting.pdf.txtExtracted texttext/plain68651https://repositorio.ufrn.br/bitstream/123456789/26757/3/AdrianoTort_ICe_2019_Spike%20sorting.pdf.txt48e418a4e6f4828cef1f68a365cf317aMD53THUMBNAILAdrianoTort_ICe_2019_Spike sorting.pdf.jpgAdrianoTort_ICe_2019_Spike sorting.pdf.jpgGenerated Thumbnailimage/jpeg1834https://repositorio.ufrn.br/bitstream/123456789/26757/4/AdrianoTort_ICe_2019_Spike%20sorting.pdf.jpge67c4ba28797a90e4eee3ff90ecba09eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/26757/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52ORIGINALAdrianoTort_ICe_2019_Spike sorting.pdfAdrianoTort_ICe_2019_Spike sorting.pdfdrianoTort_ICe_2019_Spike sortingapplication/pdf6072822https://repositorio.ufrn.br/bitstream/123456789/26757/1/AdrianoTort_ICe_2019_Spike%20sorting.pdfe72bdae23208accc5e16c969adb546daMD51123456789/267572021-07-08 10:49:47.685oai:https://repositorio.ufrn.br:123456789/26757Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-08T13:49:47Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Spike sorting with Gaussian mixture models
title Spike sorting with Gaussian mixture models
spellingShingle Spike sorting with Gaussian mixture models
Souza, Bryan C.
spike sorting
Gaussian mixture models
computational neuroscience
title_short Spike sorting with Gaussian mixture models
title_full Spike sorting with Gaussian mixture models
title_fullStr Spike sorting with Gaussian mixture models
title_full_unstemmed Spike sorting with Gaussian mixture models
title_sort Spike sorting with Gaussian mixture models
author Souza, Bryan C.
author_facet Souza, Bryan C.
Lopes-dos-Santos, Vítor
Bacelo, João
Tort, Adriano Bretanha Lopes
author_role author
author2 Lopes-dos-Santos, Vítor
Bacelo, João
Tort, Adriano Bretanha Lopes
author2_role author
author
author
dc.contributor.author.fl_str_mv Souza, Bryan C.
Lopes-dos-Santos, Vítor
Bacelo, João
Tort, Adriano Bretanha Lopes
dc.subject.por.fl_str_mv spike sorting
Gaussian mixture models
computational neuroscience
topic spike sorting
Gaussian mixture models
computational neuroscience
description The shape of extracellularly recorded action potentials is a product of several variables, such as the biophysical and anatomical properties of the neuron and the relative position of the electrode. This allows isolating spikes of different neurons recorded in the same channel into clusters based on waveform features. However, correctly classifying spike waveforms into their underlying neuronal sources remains a challenge. This process, called spike sorting, typically consists of two steps: (1) extracting relevant waveform features (e.g., height, width), and (2) clustering them into non-overlapping groups believed to correspond to different neurons. In this study, we explored the performance of Gaussian mixture models (GMMs) in these two steps. We extracted relevant features using a combination of common techniques (e.g., principal components, wavelets) and GMM fitting parameters (e.g., Gaussian distances). Then, we developed an approach to perform unsupervised clustering using GMMs, estimating cluster properties in a data-driven way. We found the proposed GMM-based framework outperforms previously established methods in simulated and real extracellular recordings. We also discuss potentially better techniques for feature extraction than the widely used principal components. Finally, we provide a friendly graphical user interface to run our algorithm, which allows manual adjustments.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-03-13T16:53:34Z
dc.date.available.fl_str_mv 2019-03-13T16:53:34Z
dc.date.issued.fl_str_mv 2019-03-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, B. C. et al. Spike sorting with Gaussian mixture models. Sci Rep. v. 9, p. 3627, mar. 2019. Doi: 10.1038/s41598-019-39986-6
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/26757
dc.identifier.doi.none.fl_str_mv 10.1038/s41598-019-39986-6
identifier_str_mv SOUZA, B. C. et al. Spike sorting with Gaussian mixture models. Sci Rep. v. 9, p. 3627, mar. 2019. Doi: 10.1038/s41598-019-39986-6
10.1038/s41598-019-39986-6
url https://repositorio.ufrn.br/jspui/handle/123456789/26757
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/26757/3/AdrianoTort_ICe_2019_Spike%20sorting.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/26757/4/AdrianoTort_ICe_2019_Spike%20sorting.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/26757/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/26757/1/AdrianoTort_ICe_2019_Spike%20sorting.pdf
bitstream.checksum.fl_str_mv 48e418a4e6f4828cef1f68a365cf317a
e67c4ba28797a90e4eee3ff90ecba09e
e9597aa2854d128fd968be5edc8a28d9
e72bdae23208accc5e16c969adb546da
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833024129302528