Spike sorting with Gaussian mixture models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/26757 |
Resumo: | The shape of extracellularly recorded action potentials is a product of several variables, such as the biophysical and anatomical properties of the neuron and the relative position of the electrode. This allows isolating spikes of different neurons recorded in the same channel into clusters based on waveform features. However, correctly classifying spike waveforms into their underlying neuronal sources remains a challenge. This process, called spike sorting, typically consists of two steps: (1) extracting relevant waveform features (e.g., height, width), and (2) clustering them into non-overlapping groups believed to correspond to different neurons. In this study, we explored the performance of Gaussian mixture models (GMMs) in these two steps. We extracted relevant features using a combination of common techniques (e.g., principal components, wavelets) and GMM fitting parameters (e.g., Gaussian distances). Then, we developed an approach to perform unsupervised clustering using GMMs, estimating cluster properties in a data-driven way. We found the proposed GMM-based framework outperforms previously established methods in simulated and real extracellular recordings. We also discuss potentially better techniques for feature extraction than the widely used principal components. Finally, we provide a friendly graphical user interface to run our algorithm, which allows manual adjustments. |
id |
UFRN_2e29fdecc93ccb34813f91e9028bb4b2 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/26757 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Souza, Bryan C.Lopes-dos-Santos, VítorBacelo, JoãoTort, Adriano Bretanha Lopes2019-03-13T16:53:34Z2019-03-13T16:53:34Z2019-03-06SOUZA, B. C. et al. Spike sorting with Gaussian mixture models. Sci Rep. v. 9, p. 3627, mar. 2019. Doi: 10.1038/s41598-019-39986-6https://repositorio.ufrn.br/jspui/handle/123456789/2675710.1038/s41598-019-39986-6spike sortingGaussian mixture modelscomputational neuroscienceSpike sorting with Gaussian mixture modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe shape of extracellularly recorded action potentials is a product of several variables, such as the biophysical and anatomical properties of the neuron and the relative position of the electrode. This allows isolating spikes of different neurons recorded in the same channel into clusters based on waveform features. However, correctly classifying spike waveforms into their underlying neuronal sources remains a challenge. This process, called spike sorting, typically consists of two steps: (1) extracting relevant waveform features (e.g., height, width), and (2) clustering them into non-overlapping groups believed to correspond to different neurons. In this study, we explored the performance of Gaussian mixture models (GMMs) in these two steps. We extracted relevant features using a combination of common techniques (e.g., principal components, wavelets) and GMM fitting parameters (e.g., Gaussian distances). Then, we developed an approach to perform unsupervised clustering using GMMs, estimating cluster properties in a data-driven way. We found the proposed GMM-based framework outperforms previously established methods in simulated and real extracellular recordings. We also discuss potentially better techniques for feature extraction than the widely used principal components. Finally, we provide a friendly graphical user interface to run our algorithm, which allows manual adjustments.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessTEXTAdrianoTort_ICe_2019_Spike sorting.pdf.txtAdrianoTort_ICe_2019_Spike sorting.pdf.txtExtracted texttext/plain68651https://repositorio.ufrn.br/bitstream/123456789/26757/3/AdrianoTort_ICe_2019_Spike%20sorting.pdf.txt48e418a4e6f4828cef1f68a365cf317aMD53THUMBNAILAdrianoTort_ICe_2019_Spike sorting.pdf.jpgAdrianoTort_ICe_2019_Spike sorting.pdf.jpgGenerated Thumbnailimage/jpeg1834https://repositorio.ufrn.br/bitstream/123456789/26757/4/AdrianoTort_ICe_2019_Spike%20sorting.pdf.jpge67c4ba28797a90e4eee3ff90ecba09eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/26757/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52ORIGINALAdrianoTort_ICe_2019_Spike sorting.pdfAdrianoTort_ICe_2019_Spike sorting.pdfdrianoTort_ICe_2019_Spike sortingapplication/pdf6072822https://repositorio.ufrn.br/bitstream/123456789/26757/1/AdrianoTort_ICe_2019_Spike%20sorting.pdfe72bdae23208accc5e16c969adb546daMD51123456789/267572021-07-08 10:49:47.685oai:https://repositorio.ufrn.br:123456789/26757Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-08T13:49:47Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Spike sorting with Gaussian mixture models |
title |
Spike sorting with Gaussian mixture models |
spellingShingle |
Spike sorting with Gaussian mixture models Souza, Bryan C. spike sorting Gaussian mixture models computational neuroscience |
title_short |
Spike sorting with Gaussian mixture models |
title_full |
Spike sorting with Gaussian mixture models |
title_fullStr |
Spike sorting with Gaussian mixture models |
title_full_unstemmed |
Spike sorting with Gaussian mixture models |
title_sort |
Spike sorting with Gaussian mixture models |
author |
Souza, Bryan C. |
author_facet |
Souza, Bryan C. Lopes-dos-Santos, Vítor Bacelo, João Tort, Adriano Bretanha Lopes |
author_role |
author |
author2 |
Lopes-dos-Santos, Vítor Bacelo, João Tort, Adriano Bretanha Lopes |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Souza, Bryan C. Lopes-dos-Santos, Vítor Bacelo, João Tort, Adriano Bretanha Lopes |
dc.subject.por.fl_str_mv |
spike sorting Gaussian mixture models computational neuroscience |
topic |
spike sorting Gaussian mixture models computational neuroscience |
description |
The shape of extracellularly recorded action potentials is a product of several variables, such as the biophysical and anatomical properties of the neuron and the relative position of the electrode. This allows isolating spikes of different neurons recorded in the same channel into clusters based on waveform features. However, correctly classifying spike waveforms into their underlying neuronal sources remains a challenge. This process, called spike sorting, typically consists of two steps: (1) extracting relevant waveform features (e.g., height, width), and (2) clustering them into non-overlapping groups believed to correspond to different neurons. In this study, we explored the performance of Gaussian mixture models (GMMs) in these two steps. We extracted relevant features using a combination of common techniques (e.g., principal components, wavelets) and GMM fitting parameters (e.g., Gaussian distances). Then, we developed an approach to perform unsupervised clustering using GMMs, estimating cluster properties in a data-driven way. We found the proposed GMM-based framework outperforms previously established methods in simulated and real extracellular recordings. We also discuss potentially better techniques for feature extraction than the widely used principal components. Finally, we provide a friendly graphical user interface to run our algorithm, which allows manual adjustments. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-03-13T16:53:34Z |
dc.date.available.fl_str_mv |
2019-03-13T16:53:34Z |
dc.date.issued.fl_str_mv |
2019-03-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUZA, B. C. et al. Spike sorting with Gaussian mixture models. Sci Rep. v. 9, p. 3627, mar. 2019. Doi: 10.1038/s41598-019-39986-6 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/26757 |
dc.identifier.doi.none.fl_str_mv |
10.1038/s41598-019-39986-6 |
identifier_str_mv |
SOUZA, B. C. et al. Spike sorting with Gaussian mixture models. Sci Rep. v. 9, p. 3627, mar. 2019. Doi: 10.1038/s41598-019-39986-6 10.1038/s41598-019-39986-6 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/26757 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/26757/3/AdrianoTort_ICe_2019_Spike%20sorting.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/26757/4/AdrianoTort_ICe_2019_Spike%20sorting.pdf.jpg https://repositorio.ufrn.br/bitstream/123456789/26757/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/26757/1/AdrianoTort_ICe_2019_Spike%20sorting.pdf |
bitstream.checksum.fl_str_mv |
48e418a4e6f4828cef1f68a365cf317a e67c4ba28797a90e4eee3ff90ecba09e e9597aa2854d128fd968be5edc8a28d9 e72bdae23208accc5e16c969adb546da |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833024129302528 |