Spatial load forecasting using a demand propagation approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TDC-LA.2010.5762882 http://hdl.handle.net/11449/72448 |
Resumo: | A method for spatial electric load forecasting using multi-agent systems, especially suited to simulate the local effect of special loads in distribution systems is presented. The method based on multi-agent systems uses two kinds of agents: reactive and proactive. The reactive agents represent each sub-zone in the service zone, characterizing each one with their corresponding load level, represented in a real number, and their relationships with other sub-zones represented in development probabilities. The proactive agent carry the new load expected to be allocated because of the new special load, this agent distribute the new load in a propagation pattern. The results are presented with maps of future expected load levels in the service zone. The method is tested with data from a mid-size city real distribution system, simulating the effect of a load with attraction and repulsion attributes. The method presents good results and performance. © 2011 IEEE. |
id |
UNSP_b8af0324e334d2fe85575ecd2d41f891 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72448 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Spatial load forecasting using a demand propagation approachagentdistribution planningknowledge extractionland usemulti-agent systemsSpatial electric load forecastingDemand propagationDistribution systemsExpected loadsKnowledge extractionLoad levelsLocal effectsPropagation patternReactive agentReal distributionReal numberSpatial load forecastingElectric load distributionElectric loadsForecastingIntelligent agentsLocal area networksMulti agent systemsElectric load forecastingA method for spatial electric load forecasting using multi-agent systems, especially suited to simulate the local effect of special loads in distribution systems is presented. The method based on multi-agent systems uses two kinds of agents: reactive and proactive. The reactive agents represent each sub-zone in the service zone, characterizing each one with their corresponding load level, represented in a real number, and their relationships with other sub-zones represented in development probabilities. The proactive agent carry the new load expected to be allocated because of the new special load, this agent distribute the new load in a propagation pattern. The results are presented with maps of future expected load levels in the service zone. The method is tested with data from a mid-size city real distribution system, simulating the effect of a load with attraction and repulsion attributes. The method presents good results and performance. © 2011 IEEE.Universidade Estadual Paulista (UNESP), Ilha Solteira, SPCECE-UNIOESTE, Foz de Iguaçu-PRUniversidade Estadual Paulista (UNESP), Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Universidade Estadual do Oeste do Paraná (UNIOESTE)Melo, J. D. [UNESP]Carreno, E. M.Padilha-Feltrin, A. [UNESP]2014-05-27T11:25:53Z2014-05-27T11:25:53Z2011-05-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject196-203http://dx.doi.org/10.1109/TDC-LA.2010.57628822010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA 2010, p. 196-203.http://hdl.handle.net/11449/7244810.1109/TDC-LA.2010.57628822-s2.0-79957564714Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA 2010info:eu-repo/semantics/openAccess2024-07-04T19:11:55Zoai:repositorio.unesp.br:11449/72448Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:40:25.405109Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Spatial load forecasting using a demand propagation approach |
title |
Spatial load forecasting using a demand propagation approach |
spellingShingle |
Spatial load forecasting using a demand propagation approach Melo, J. D. [UNESP] agent distribution planning knowledge extraction land use multi-agent systems Spatial electric load forecasting Demand propagation Distribution systems Expected loads Knowledge extraction Load levels Local effects Propagation pattern Reactive agent Real distribution Real number Spatial load forecasting Electric load distribution Electric loads Forecasting Intelligent agents Local area networks Multi agent systems Electric load forecasting |
title_short |
Spatial load forecasting using a demand propagation approach |
title_full |
Spatial load forecasting using a demand propagation approach |
title_fullStr |
Spatial load forecasting using a demand propagation approach |
title_full_unstemmed |
Spatial load forecasting using a demand propagation approach |
title_sort |
Spatial load forecasting using a demand propagation approach |
author |
Melo, J. D. [UNESP] |
author_facet |
Melo, J. D. [UNESP] Carreno, E. M. Padilha-Feltrin, A. [UNESP] |
author_role |
author |
author2 |
Carreno, E. M. Padilha-Feltrin, A. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual do Oeste do Paraná (UNIOESTE) |
dc.contributor.author.fl_str_mv |
Melo, J. D. [UNESP] Carreno, E. M. Padilha-Feltrin, A. [UNESP] |
dc.subject.por.fl_str_mv |
agent distribution planning knowledge extraction land use multi-agent systems Spatial electric load forecasting Demand propagation Distribution systems Expected loads Knowledge extraction Load levels Local effects Propagation pattern Reactive agent Real distribution Real number Spatial load forecasting Electric load distribution Electric loads Forecasting Intelligent agents Local area networks Multi agent systems Electric load forecasting |
topic |
agent distribution planning knowledge extraction land use multi-agent systems Spatial electric load forecasting Demand propagation Distribution systems Expected loads Knowledge extraction Load levels Local effects Propagation pattern Reactive agent Real distribution Real number Spatial load forecasting Electric load distribution Electric loads Forecasting Intelligent agents Local area networks Multi agent systems Electric load forecasting |
description |
A method for spatial electric load forecasting using multi-agent systems, especially suited to simulate the local effect of special loads in distribution systems is presented. The method based on multi-agent systems uses two kinds of agents: reactive and proactive. The reactive agents represent each sub-zone in the service zone, characterizing each one with their corresponding load level, represented in a real number, and their relationships with other sub-zones represented in development probabilities. The proactive agent carry the new load expected to be allocated because of the new special load, this agent distribute the new load in a propagation pattern. The results are presented with maps of future expected load levels in the service zone. The method is tested with data from a mid-size city real distribution system, simulating the effect of a load with attraction and repulsion attributes. The method presents good results and performance. © 2011 IEEE. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05-31 2014-05-27T11:25:53Z 2014-05-27T11:25:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TDC-LA.2010.5762882 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA 2010, p. 196-203. http://hdl.handle.net/11449/72448 10.1109/TDC-LA.2010.5762882 2-s2.0-79957564714 |
url |
http://dx.doi.org/10.1109/TDC-LA.2010.5762882 http://hdl.handle.net/11449/72448 |
identifier_str_mv |
2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA 2010, p. 196-203. 10.1109/TDC-LA.2010.5762882 2-s2.0-79957564714 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA 2010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
196-203 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129449997107200 |