A fast electric load forecasting using adaptive neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PTC.2003.1304158 http://hdl.handle.net/11449/67494 |
Resumo: | This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE. |
id |
UNSP_bd46af35f745bc8a36d2e0f626730a4b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/67494 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A fast electric load forecasting using adaptive neural networksAdaptive parametersBackpropagation algorithmElectrical load forecastingFuzzy controllerFuzzy logicNeural networksPostsynaptic functionAdaptive neural networksAdaptive processFaster convergenceFuzzy controllersGlobal errorsMultilayer feedforward neural networksNetwork trainingTwo parameterBackpropagation algorithmsElectric loadsFeedforward neural networksNetwork architectureElectric load forecastingThis work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.UNESP, Ilha Solteira, SPUNESP, Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Lopes, M. L M [UNESP]Lotufo, A. D P [UNESP]Minussi, C. R. [UNESP]2014-05-27T11:20:56Z2014-05-27T11:20:56Z2003-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject362-367http://dx.doi.org/10.1109/PTC.2003.13041582003 IEEE Bologna PowerTech - Conference Proceedings, v. 1, p. 362-367.http://hdl.handle.net/11449/6749410.1109/PTC.2003.13041582-s2.0-848615208577166279400544764Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2003 IEEE Bologna PowerTech - Conference Proceedingsinfo:eu-repo/semantics/openAccess2024-07-04T19:11:55Zoai:repositorio.unesp.br:11449/67494Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:45:22.026310Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A fast electric load forecasting using adaptive neural networks |
title |
A fast electric load forecasting using adaptive neural networks |
spellingShingle |
A fast electric load forecasting using adaptive neural networks Lopes, M. L M [UNESP] Adaptive parameters Backpropagation algorithm Electrical load forecasting Fuzzy controller Fuzzy logic Neural networks Postsynaptic function Adaptive neural networks Adaptive process Faster convergence Fuzzy controllers Global errors Multilayer feedforward neural networks Network training Two parameter Backpropagation algorithms Electric loads Feedforward neural networks Network architecture Electric load forecasting |
title_short |
A fast electric load forecasting using adaptive neural networks |
title_full |
A fast electric load forecasting using adaptive neural networks |
title_fullStr |
A fast electric load forecasting using adaptive neural networks |
title_full_unstemmed |
A fast electric load forecasting using adaptive neural networks |
title_sort |
A fast electric load forecasting using adaptive neural networks |
author |
Lopes, M. L M [UNESP] |
author_facet |
Lopes, M. L M [UNESP] Lotufo, A. D P [UNESP] Minussi, C. R. [UNESP] |
author_role |
author |
author2 |
Lotufo, A. D P [UNESP] Minussi, C. R. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Lopes, M. L M [UNESP] Lotufo, A. D P [UNESP] Minussi, C. R. [UNESP] |
dc.subject.por.fl_str_mv |
Adaptive parameters Backpropagation algorithm Electrical load forecasting Fuzzy controller Fuzzy logic Neural networks Postsynaptic function Adaptive neural networks Adaptive process Faster convergence Fuzzy controllers Global errors Multilayer feedforward neural networks Network training Two parameter Backpropagation algorithms Electric loads Feedforward neural networks Network architecture Electric load forecasting |
topic |
Adaptive parameters Backpropagation algorithm Electrical load forecasting Fuzzy controller Fuzzy logic Neural networks Postsynaptic function Adaptive neural networks Adaptive process Faster convergence Fuzzy controllers Global errors Multilayer feedforward neural networks Network training Two parameter Backpropagation algorithms Electric loads Feedforward neural networks Network architecture Electric load forecasting |
description |
This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-12-01 2014-05-27T11:20:56Z 2014-05-27T11:20:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PTC.2003.1304158 2003 IEEE Bologna PowerTech - Conference Proceedings, v. 1, p. 362-367. http://hdl.handle.net/11449/67494 10.1109/PTC.2003.1304158 2-s2.0-84861520857 7166279400544764 |
url |
http://dx.doi.org/10.1109/PTC.2003.1304158 http://hdl.handle.net/11449/67494 |
identifier_str_mv |
2003 IEEE Bologna PowerTech - Conference Proceedings, v. 1, p. 362-367. 10.1109/PTC.2003.1304158 2-s2.0-84861520857 7166279400544764 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2003 IEEE Bologna PowerTech - Conference Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
362-367 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129458887983104 |