A fast electric load forecasting using adaptive neural networks

Detalhes bibliográficos
Autor(a) principal: Lopes, M. L M [UNESP]
Data de Publicação: 2003
Outros Autores: Lotufo, A. D P [UNESP], Minussi, C. R. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PTC.2003.1304158
http://hdl.handle.net/11449/67494
Resumo: This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.
id UNSP_bd46af35f745bc8a36d2e0f626730a4b
oai_identifier_str oai:repositorio.unesp.br:11449/67494
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A fast electric load forecasting using adaptive neural networksAdaptive parametersBackpropagation algorithmElectrical load forecastingFuzzy controllerFuzzy logicNeural networksPostsynaptic functionAdaptive neural networksAdaptive processFaster convergenceFuzzy controllersGlobal errorsMultilayer feedforward neural networksNetwork trainingTwo parameterBackpropagation algorithmsElectric loadsFeedforward neural networksNetwork architectureElectric load forecastingThis work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.UNESP, Ilha Solteira, SPUNESP, Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Lopes, M. L M [UNESP]Lotufo, A. D P [UNESP]Minussi, C. R. [UNESP]2014-05-27T11:20:56Z2014-05-27T11:20:56Z2003-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject362-367http://dx.doi.org/10.1109/PTC.2003.13041582003 IEEE Bologna PowerTech - Conference Proceedings, v. 1, p. 362-367.http://hdl.handle.net/11449/6749410.1109/PTC.2003.13041582-s2.0-848615208577166279400544764Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2003 IEEE Bologna PowerTech - Conference Proceedingsinfo:eu-repo/semantics/openAccess2024-07-04T19:11:55Zoai:repositorio.unesp.br:11449/67494Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:45:22.026310Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A fast electric load forecasting using adaptive neural networks
title A fast electric load forecasting using adaptive neural networks
spellingShingle A fast electric load forecasting using adaptive neural networks
Lopes, M. L M [UNESP]
Adaptive parameters
Backpropagation algorithm
Electrical load forecasting
Fuzzy controller
Fuzzy logic
Neural networks
Postsynaptic function
Adaptive neural networks
Adaptive process
Faster convergence
Fuzzy controllers
Global errors
Multilayer feedforward neural networks
Network training
Two parameter
Backpropagation algorithms
Electric loads
Feedforward neural networks
Network architecture
Electric load forecasting
title_short A fast electric load forecasting using adaptive neural networks
title_full A fast electric load forecasting using adaptive neural networks
title_fullStr A fast electric load forecasting using adaptive neural networks
title_full_unstemmed A fast electric load forecasting using adaptive neural networks
title_sort A fast electric load forecasting using adaptive neural networks
author Lopes, M. L M [UNESP]
author_facet Lopes, M. L M [UNESP]
Lotufo, A. D P [UNESP]
Minussi, C. R. [UNESP]
author_role author
author2 Lotufo, A. D P [UNESP]
Minussi, C. R. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Lopes, M. L M [UNESP]
Lotufo, A. D P [UNESP]
Minussi, C. R. [UNESP]
dc.subject.por.fl_str_mv Adaptive parameters
Backpropagation algorithm
Electrical load forecasting
Fuzzy controller
Fuzzy logic
Neural networks
Postsynaptic function
Adaptive neural networks
Adaptive process
Faster convergence
Fuzzy controllers
Global errors
Multilayer feedforward neural networks
Network training
Two parameter
Backpropagation algorithms
Electric loads
Feedforward neural networks
Network architecture
Electric load forecasting
topic Adaptive parameters
Backpropagation algorithm
Electrical load forecasting
Fuzzy controller
Fuzzy logic
Neural networks
Postsynaptic function
Adaptive neural networks
Adaptive process
Faster convergence
Fuzzy controllers
Global errors
Multilayer feedforward neural networks
Network training
Two parameter
Backpropagation algorithms
Electric loads
Feedforward neural networks
Network architecture
Electric load forecasting
description This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.
publishDate 2003
dc.date.none.fl_str_mv 2003-12-01
2014-05-27T11:20:56Z
2014-05-27T11:20:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PTC.2003.1304158
2003 IEEE Bologna PowerTech - Conference Proceedings, v. 1, p. 362-367.
http://hdl.handle.net/11449/67494
10.1109/PTC.2003.1304158
2-s2.0-84861520857
7166279400544764
url http://dx.doi.org/10.1109/PTC.2003.1304158
http://hdl.handle.net/11449/67494
identifier_str_mv 2003 IEEE Bologna PowerTech - Conference Proceedings, v. 1, p. 362-367.
10.1109/PTC.2003.1304158
2-s2.0-84861520857
7166279400544764
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2003 IEEE Bologna PowerTech - Conference Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 362-367
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129458887983104