3D Auto-Segmentation of Mandibular Condyles

Detalhes bibliográficos
Autor(a) principal: Brosset, Serge
Data de Publicação: 2020
Outros Autores: Dumont, Maxime, Bianchi, Jonas [UNESP], Ruellas, Antonio, Cevidanes, Lucia, Yatabe, Marilia, Goncalves, Joao [UNESP], Benavides, Erika, Soki, Fabiana, Paniagua, Beatriz, Prieto, Juan, Najarian, Kayvan, Gryak, Jonathan, Soroushmehr, Reza
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/EMBC44109.2020.9175692
http://hdl.handle.net/11449/221555
Resumo: Temporomandibular joints (TMJ) like a hinge connect the jawbone to the skull. TMJ disorders could cause pain in the jaw joint and the muscles controlling jaw movement. However, the disease cannot be diagnosed until it becomes symptomatic. It has been shown that bone resorption at the condyle articular surface is already evident at initial diagnosis of TMJ Osteoarthritis (OA). Therefore, analyzing the bone structure will facilitate the disease diagnosis. The important step towards this analysis is the condyle segmentation. This article deals with a method to automatically segment the temporomandibular joint condyle out of cone beam CT (CBCT) scans. In the proposed method we denoise images and apply 3D active contour and morphological operations to segment the condyle. The experimental results show that the proposed method yields the Dice score of 0.9461 with the standards deviation of 0.0888 when it is applied on CBCT images of 95 patients. This segmentation will allow large datasets to be analyzed more efficiently towards data sciences and machine learning approaches for disease classification.
id UNSP_be05f99cb1f5bb59a93418586e3c54ae
oai_identifier_str oai:repositorio.unesp.br:11449/221555
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling 3D Auto-Segmentation of Mandibular CondylesTemporomandibular joints (TMJ) like a hinge connect the jawbone to the skull. TMJ disorders could cause pain in the jaw joint and the muscles controlling jaw movement. However, the disease cannot be diagnosed until it becomes symptomatic. It has been shown that bone resorption at the condyle articular surface is already evident at initial diagnosis of TMJ Osteoarthritis (OA). Therefore, analyzing the bone structure will facilitate the disease diagnosis. The important step towards this analysis is the condyle segmentation. This article deals with a method to automatically segment the temporomandibular joint condyle out of cone beam CT (CBCT) scans. In the proposed method we denoise images and apply 3D active contour and morphological operations to segment the condyle. The experimental results show that the proposed method yields the Dice score of 0.9461 with the standards deviation of 0.0888 when it is applied on CBCT images of 95 patients. This segmentation will allow large datasets to be analyzed more efficiently towards data sciences and machine learning approaches for disease classification.University of Michigan Department of Orthodontics and Pediatric DentistryPediatric Dentistry and Orthodontics São Paulo State UniversityUniversity of Michigan Department of Periodontics and Oral MedicineUniversity of Michigan Department of Computational Medicine and BioinformaticsUniversity of North Carolina Departments of Psychiatry Orthodontics and Computer SciencePediatric Dentistry and Orthodontics São Paulo State UniversityUniversity of MichiganUniversidade Estadual Paulista (UNESP)Orthodontics and Computer ScienceBrosset, SergeDumont, MaximeBianchi, Jonas [UNESP]Ruellas, AntonioCevidanes, LuciaYatabe, MariliaGoncalves, Joao [UNESP]Benavides, ErikaSoki, FabianaPaniagua, BeatrizPrieto, JuanNajarian, KayvanGryak, JonathanSoroushmehr, Reza2022-04-28T19:29:20Z2022-04-28T19:29:20Z2020-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1270-1273http://dx.doi.org/10.1109/EMBC44109.2020.9175692Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, v. 2020-July, p. 1270-1273.1557-170Xhttp://hdl.handle.net/11449/22155510.1109/EMBC44109.2020.91756922-s2.0-85091025667Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBSinfo:eu-repo/semantics/openAccess2022-04-28T19:29:21Zoai:repositorio.unesp.br:11449/221555Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:02:22.232393Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv 3D Auto-Segmentation of Mandibular Condyles
title 3D Auto-Segmentation of Mandibular Condyles
spellingShingle 3D Auto-Segmentation of Mandibular Condyles
Brosset, Serge
title_short 3D Auto-Segmentation of Mandibular Condyles
title_full 3D Auto-Segmentation of Mandibular Condyles
title_fullStr 3D Auto-Segmentation of Mandibular Condyles
title_full_unstemmed 3D Auto-Segmentation of Mandibular Condyles
title_sort 3D Auto-Segmentation of Mandibular Condyles
author Brosset, Serge
author_facet Brosset, Serge
Dumont, Maxime
Bianchi, Jonas [UNESP]
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Paniagua, Beatriz
Prieto, Juan
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
author_role author
author2 Dumont, Maxime
Bianchi, Jonas [UNESP]
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Paniagua, Beatriz
Prieto, Juan
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv University of Michigan
Universidade Estadual Paulista (UNESP)
Orthodontics and Computer Science
dc.contributor.author.fl_str_mv Brosset, Serge
Dumont, Maxime
Bianchi, Jonas [UNESP]
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Paniagua, Beatriz
Prieto, Juan
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
description Temporomandibular joints (TMJ) like a hinge connect the jawbone to the skull. TMJ disorders could cause pain in the jaw joint and the muscles controlling jaw movement. However, the disease cannot be diagnosed until it becomes symptomatic. It has been shown that bone resorption at the condyle articular surface is already evident at initial diagnosis of TMJ Osteoarthritis (OA). Therefore, analyzing the bone structure will facilitate the disease diagnosis. The important step towards this analysis is the condyle segmentation. This article deals with a method to automatically segment the temporomandibular joint condyle out of cone beam CT (CBCT) scans. In the proposed method we denoise images and apply 3D active contour and morphological operations to segment the condyle. The experimental results show that the proposed method yields the Dice score of 0.9461 with the standards deviation of 0.0888 when it is applied on CBCT images of 95 patients. This segmentation will allow large datasets to be analyzed more efficiently towards data sciences and machine learning approaches for disease classification.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-01
2022-04-28T19:29:20Z
2022-04-28T19:29:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/EMBC44109.2020.9175692
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, v. 2020-July, p. 1270-1273.
1557-170X
http://hdl.handle.net/11449/221555
10.1109/EMBC44109.2020.9175692
2-s2.0-85091025667
url http://dx.doi.org/10.1109/EMBC44109.2020.9175692
http://hdl.handle.net/11449/221555
identifier_str_mv Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, v. 2020-July, p. 1270-1273.
1557-170X
10.1109/EMBC44109.2020.9175692
2-s2.0-85091025667
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1270-1273
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129575477051392