A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1088/0253-6102/69/2/115 http://hdl.handle.net/11449/163875 |
Resumo: | We study the problem of how the Floquet property manifests for periodic Schrodinger operators, which are known to have multiple of asymptotic spectral solutions. The main conclusions are made for elliptic potentials, we demonstrate that for each period of the elliptic function there is a relation about the Floquet exponent and the monodromy of wave function. Among them there are two relations not explained by the classical Floquet theory. These relations produce both old and new asymptotic solutions consistent with results already known. |
id |
UNSP_be685dd0fcd1d1374a936c204d3b8781 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/163875 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvaluespectral theoryelliptic potentialsSeiberg-Witten dualityWe study the problem of how the Floquet property manifests for periodic Schrodinger operators, which are known to have multiple of asymptotic spectral solutions. The main conclusions are made for elliptic potentials, we demonstrate that for each period of the elliptic function there is a relation about the Floquet exponent and the monodromy of wave function. Among them there are two relations not explained by the classical Floquet theory. These relations produce both old and new asymptotic solutions consistent with results already known.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilFAPESP: 2011/21812-8Iop Publishing LtdUniversidade Estadual Paulista (Unesp)He, Wei [UNESP]2018-11-26T17:48:15Z2018-11-26T17:48:15Z2018-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article115-126application/pdfhttp://dx.doi.org/10.1088/0253-6102/69/2/115Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 69, n. 2, p. 115-126, 2018.0253-6102http://hdl.handle.net/11449/16387510.1088/0253-6102/69/2/115WOS:000425414600001WOS000425414600001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications In Theoretical Physics0,401info:eu-repo/semantics/openAccess2023-10-22T06:05:29Zoai:repositorio.unesp.br:11449/163875Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:34:55.207483Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue |
title |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue |
spellingShingle |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue He, Wei [UNESP] spectral theory elliptic potentials Seiberg-Witten duality |
title_short |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue |
title_full |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue |
title_fullStr |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue |
title_full_unstemmed |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue |
title_sort |
A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue |
author |
He, Wei [UNESP] |
author_facet |
He, Wei [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
He, Wei [UNESP] |
dc.subject.por.fl_str_mv |
spectral theory elliptic potentials Seiberg-Witten duality |
topic |
spectral theory elliptic potentials Seiberg-Witten duality |
description |
We study the problem of how the Floquet property manifests for periodic Schrodinger operators, which are known to have multiple of asymptotic spectral solutions. The main conclusions are made for elliptic potentials, we demonstrate that for each period of the elliptic function there is a relation about the Floquet exponent and the monodromy of wave function. Among them there are two relations not explained by the classical Floquet theory. These relations produce both old and new asymptotic solutions consistent with results already known. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-26T17:48:15Z 2018-11-26T17:48:15Z 2018-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/0253-6102/69/2/115 Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 69, n. 2, p. 115-126, 2018. 0253-6102 http://hdl.handle.net/11449/163875 10.1088/0253-6102/69/2/115 WOS:000425414600001 WOS000425414600001.pdf |
url |
http://dx.doi.org/10.1088/0253-6102/69/2/115 http://hdl.handle.net/11449/163875 |
identifier_str_mv |
Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 69, n. 2, p. 115-126, 2018. 0253-6102 10.1088/0253-6102/69/2/115 WOS:000425414600001 WOS000425414600001.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Communications In Theoretical Physics 0,401 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
115-126 application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing Ltd |
publisher.none.fl_str_mv |
Iop Publishing Ltd |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128536310972416 |