A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue

Detalhes bibliográficos
Autor(a) principal: He, Wei [UNESP]
Data de Publicação: 2018
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/0253-6102/69/2/115
http://hdl.handle.net/11449/163875
Resumo: We study the problem of how the Floquet property manifests for periodic Schrodinger operators, which are known to have multiple of asymptotic spectral solutions. The main conclusions are made for elliptic potentials, we demonstrate that for each period of the elliptic function there is a relation about the Floquet exponent and the monodromy of wave function. Among them there are two relations not explained by the classical Floquet theory. These relations produce both old and new asymptotic solutions consistent with results already known.
id UNSP_be685dd0fcd1d1374a936c204d3b8781
oai_identifier_str oai:repositorio.unesp.br:11449/163875
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvaluespectral theoryelliptic potentialsSeiberg-Witten dualityWe study the problem of how the Floquet property manifests for periodic Schrodinger operators, which are known to have multiple of asymptotic spectral solutions. The main conclusions are made for elliptic potentials, we demonstrate that for each period of the elliptic function there is a relation about the Floquet exponent and the monodromy of wave function. Among them there are two relations not explained by the classical Floquet theory. These relations produce both old and new asymptotic solutions consistent with results already known.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilFAPESP: 2011/21812-8Iop Publishing LtdUniversidade Estadual Paulista (Unesp)He, Wei [UNESP]2018-11-26T17:48:15Z2018-11-26T17:48:15Z2018-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article115-126application/pdfhttp://dx.doi.org/10.1088/0253-6102/69/2/115Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 69, n. 2, p. 115-126, 2018.0253-6102http://hdl.handle.net/11449/16387510.1088/0253-6102/69/2/115WOS:000425414600001WOS000425414600001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications In Theoretical Physics0,401info:eu-repo/semantics/openAccess2023-10-22T06:05:29Zoai:repositorio.unesp.br:11449/163875Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:34:55.207483Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
title A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
spellingShingle A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
He, Wei [UNESP]
spectral theory
elliptic potentials
Seiberg-Witten duality
title_short A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
title_full A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
title_fullStr A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
title_full_unstemmed A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
title_sort A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue
author He, Wei [UNESP]
author_facet He, Wei [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv He, Wei [UNESP]
dc.subject.por.fl_str_mv spectral theory
elliptic potentials
Seiberg-Witten duality
topic spectral theory
elliptic potentials
Seiberg-Witten duality
description We study the problem of how the Floquet property manifests for periodic Schrodinger operators, which are known to have multiple of asymptotic spectral solutions. The main conclusions are made for elliptic potentials, we demonstrate that for each period of the elliptic function there is a relation about the Floquet exponent and the monodromy of wave function. Among them there are two relations not explained by the classical Floquet theory. These relations produce both old and new asymptotic solutions consistent with results already known.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-26T17:48:15Z
2018-11-26T17:48:15Z
2018-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/0253-6102/69/2/115
Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 69, n. 2, p. 115-126, 2018.
0253-6102
http://hdl.handle.net/11449/163875
10.1088/0253-6102/69/2/115
WOS:000425414600001
WOS000425414600001.pdf
url http://dx.doi.org/10.1088/0253-6102/69/2/115
http://hdl.handle.net/11449/163875
identifier_str_mv Communications In Theoretical Physics. Bristol: Iop Publishing Ltd, v. 69, n. 2, p. 115-126, 2018.
0253-6102
10.1088/0253-6102/69/2/115
WOS:000425414600001
WOS000425414600001.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Communications In Theoretical Physics
0,401
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 115-126
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing Ltd
publisher.none.fl_str_mv Iop Publishing Ltd
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128536310972416