Design of silicon Mach-Zehnder modulators employing deep neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/246710 |
Resumo: | We present an efficient o ptimization m ethod f or t he d esign o f silicon-on-insulator integrated Mach-Zehnder modulators based on a deep neural network that is capable of predicting the main figures of merit from the modulator design variables. |
id |
UNSP_bfd9b20e4b188e4210364f0690834614 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/246710 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Design of silicon Mach-Zehnder modulators employing deep neural networksWe present an efficient o ptimization m ethod f or t he d esign o f silicon-on-insulator integrated Mach-Zehnder modulators based on a deep neural network that is capable of predicting the main figures of merit from the modulator design variables.Fundo para o Desenvolvimento Tecnológico das TelecomunicaçõesFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CPQD - Optical Communication Solutions, SPState University of São Paulo (UNESP), Campus of São João da Boa Vista, SPState University of São Paulo (UNESP), Campus of São João da Boa Vista, SPFundo para o Desenvolvimento Tecnológico das Telecomunicações: 01.19.0088.00FAPESP: 2015/24517-8CNPq: 311035/2018-3CNPq: 315391/2018-9CNPq: 432303/2018-9CPQD - Optical Communication SolutionsUniversidade Estadual Paulista (UNESP)de Paula, Rômulo [UNESP]Bustamante, Yesica R.R.Sutili, TiagoFigueiredo, Rafael C.Abbade, Marcelo Luis F. [UNESP]Aldaya, Ivan [UNESP]2023-07-29T12:48:26Z2023-07-29T12:48:26Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectOptics InfoBase Conference Papers.http://hdl.handle.net/11449/2467102-s2.0-85146766012Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengOptics InfoBase Conference Papersinfo:eu-repo/semantics/openAccess2023-07-29T12:48:26Zoai:repositorio.unesp.br:11449/246710Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:33:40.950715Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Design of silicon Mach-Zehnder modulators employing deep neural networks |
title |
Design of silicon Mach-Zehnder modulators employing deep neural networks |
spellingShingle |
Design of silicon Mach-Zehnder modulators employing deep neural networks de Paula, Rômulo [UNESP] |
title_short |
Design of silicon Mach-Zehnder modulators employing deep neural networks |
title_full |
Design of silicon Mach-Zehnder modulators employing deep neural networks |
title_fullStr |
Design of silicon Mach-Zehnder modulators employing deep neural networks |
title_full_unstemmed |
Design of silicon Mach-Zehnder modulators employing deep neural networks |
title_sort |
Design of silicon Mach-Zehnder modulators employing deep neural networks |
author |
de Paula, Rômulo [UNESP] |
author_facet |
de Paula, Rômulo [UNESP] Bustamante, Yesica R.R. Sutili, Tiago Figueiredo, Rafael C. Abbade, Marcelo Luis F. [UNESP] Aldaya, Ivan [UNESP] |
author_role |
author |
author2 |
Bustamante, Yesica R.R. Sutili, Tiago Figueiredo, Rafael C. Abbade, Marcelo Luis F. [UNESP] Aldaya, Ivan [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
CPQD - Optical Communication Solutions Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
de Paula, Rômulo [UNESP] Bustamante, Yesica R.R. Sutili, Tiago Figueiredo, Rafael C. Abbade, Marcelo Luis F. [UNESP] Aldaya, Ivan [UNESP] |
description |
We present an efficient o ptimization m ethod f or t he d esign o f silicon-on-insulator integrated Mach-Zehnder modulators based on a deep neural network that is capable of predicting the main figures of merit from the modulator design variables. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-07-29T12:48:26Z 2023-07-29T12:48:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Optics InfoBase Conference Papers. http://hdl.handle.net/11449/246710 2-s2.0-85146766012 |
identifier_str_mv |
Optics InfoBase Conference Papers. 2-s2.0-85146766012 |
url |
http://hdl.handle.net/11449/246710 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Optics InfoBase Conference Papers |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129335604805632 |