Design of silicon Mach-Zehnder modulators employing deep neural networks

Detalhes bibliográficos
Autor(a) principal: de Paula, Rômulo [UNESP]
Data de Publicação: 2022
Outros Autores: Bustamante, Yesica R.R., Sutili, Tiago, Figueiredo, Rafael C., Abbade, Marcelo Luis F. [UNESP], Aldaya, Ivan [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/246710
Resumo: We present an efficient o ptimization m ethod f or t he d esign o f silicon-on-insulator integrated Mach-Zehnder modulators based on a deep neural network that is capable of predicting the main figures of merit from the modulator design variables.
id UNSP_bfd9b20e4b188e4210364f0690834614
oai_identifier_str oai:repositorio.unesp.br:11449/246710
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Design of silicon Mach-Zehnder modulators employing deep neural networksWe present an efficient o ptimization m ethod f or t he d esign o f silicon-on-insulator integrated Mach-Zehnder modulators based on a deep neural network that is capable of predicting the main figures of merit from the modulator design variables.Fundo para o Desenvolvimento Tecnológico das TelecomunicaçõesFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CPQD - Optical Communication Solutions, SPState University of São Paulo (UNESP), Campus of São João da Boa Vista, SPState University of São Paulo (UNESP), Campus of São João da Boa Vista, SPFundo para o Desenvolvimento Tecnológico das Telecomunicações: 01.19.0088.00FAPESP: 2015/24517-8CNPq: 311035/2018-3CNPq: 315391/2018-9CNPq: 432303/2018-9CPQD - Optical Communication SolutionsUniversidade Estadual Paulista (UNESP)de Paula, Rômulo [UNESP]Bustamante, Yesica R.R.Sutili, TiagoFigueiredo, Rafael C.Abbade, Marcelo Luis F. [UNESP]Aldaya, Ivan [UNESP]2023-07-29T12:48:26Z2023-07-29T12:48:26Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectOptics InfoBase Conference Papers.http://hdl.handle.net/11449/2467102-s2.0-85146766012Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengOptics InfoBase Conference Papersinfo:eu-repo/semantics/openAccess2023-07-29T12:48:26Zoai:repositorio.unesp.br:11449/246710Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:33:40.950715Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Design of silicon Mach-Zehnder modulators employing deep neural networks
title Design of silicon Mach-Zehnder modulators employing deep neural networks
spellingShingle Design of silicon Mach-Zehnder modulators employing deep neural networks
de Paula, Rômulo [UNESP]
title_short Design of silicon Mach-Zehnder modulators employing deep neural networks
title_full Design of silicon Mach-Zehnder modulators employing deep neural networks
title_fullStr Design of silicon Mach-Zehnder modulators employing deep neural networks
title_full_unstemmed Design of silicon Mach-Zehnder modulators employing deep neural networks
title_sort Design of silicon Mach-Zehnder modulators employing deep neural networks
author de Paula, Rômulo [UNESP]
author_facet de Paula, Rômulo [UNESP]
Bustamante, Yesica R.R.
Sutili, Tiago
Figueiredo, Rafael C.
Abbade, Marcelo Luis F. [UNESP]
Aldaya, Ivan [UNESP]
author_role author
author2 Bustamante, Yesica R.R.
Sutili, Tiago
Figueiredo, Rafael C.
Abbade, Marcelo Luis F. [UNESP]
Aldaya, Ivan [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv CPQD - Optical Communication Solutions
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv de Paula, Rômulo [UNESP]
Bustamante, Yesica R.R.
Sutili, Tiago
Figueiredo, Rafael C.
Abbade, Marcelo Luis F. [UNESP]
Aldaya, Ivan [UNESP]
description We present an efficient o ptimization m ethod f or t he d esign o f silicon-on-insulator integrated Mach-Zehnder modulators based on a deep neural network that is capable of predicting the main figures of merit from the modulator design variables.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-07-29T12:48:26Z
2023-07-29T12:48:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv Optics InfoBase Conference Papers.
http://hdl.handle.net/11449/246710
2-s2.0-85146766012
identifier_str_mv Optics InfoBase Conference Papers.
2-s2.0-85146766012
url http://hdl.handle.net/11449/246710
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Optics InfoBase Conference Papers
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129335604805632