Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1140/epjs/s11734-021-00236-4 http://hdl.handle.net/11449/233324 |
Resumo: | In this paper, the dynamical behavior of a four-dimensional magnetohydrodynamic model, consisting of a generalized Lorenz model, is investigated. A nonlinear dynamical analysis is performed using Lyapunov exponents and bifurcation diagrams, focusing on the chaotic and hyperchaotic behaviors associated with the bifurcation parameter (k1) that couples the equations of fluid displacement to the induced magnetic field. The State-dependent Riccati Equation (SDRE) and the Optimal Linear Feedback Control (OLFC) techniques are considered to design the state feedback control system that stabilizes the system to a previously defined orbit. The performance of the control systems are compared showing that the OLFC presents better results. |
id |
UNSP_c0aee08b469e11935003b095367c5574 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/233324 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutionsNonlinear dynamicsOLFC controlSDRE controlIn this paper, the dynamical behavior of a four-dimensional magnetohydrodynamic model, consisting of a generalized Lorenz model, is investigated. A nonlinear dynamical analysis is performed using Lyapunov exponents and bifurcation diagrams, focusing on the chaotic and hyperchaotic behaviors associated with the bifurcation parameter (k1) that couples the equations of fluid displacement to the induced magnetic field. The State-dependent Riccati Equation (SDRE) and the Optimal Linear Feedback Control (OLFC) techniques are considered to design the state feedback control system that stabilizes the system to a previously defined orbit. The performance of the control systems are compared showing that the OLFC presents better results.Federal Technological University of ParanáSchool of Engineering São Paulo State UniversityFaculty of Mechanical Engineering Lublin University of TechnologyInstitute of Science and Technology São Paulo State UniversitySchool of Engineering São Paulo State UniversityInstitute of Science and Technology São Paulo State UniversityFederal Technological University of ParanáUniversidade Estadual Paulista (UNESP)Lublin University of TechnologyDaum, Hilson H. [UNESP]Tusset, Angelo M.Ribeiro, Mauricio A.Litak, GrzegorzBueno, Atila M. [UNESP]Balthazar, Jose M. [UNESP]2022-05-01T07:58:44Z2022-05-01T07:58:44Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1140/epjs/s11734-021-00236-4European Physical Journal: Special Topics.1951-64011951-6355http://hdl.handle.net/11449/23332410.1140/epjs/s11734-021-00236-42-s2.0-85111400505Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEuropean Physical Journal: Special Topicsinfo:eu-repo/semantics/openAccess2022-05-01T07:58:44Zoai:repositorio.unesp.br:11449/233324Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:19:10.755172Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions |
title |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions |
spellingShingle |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions Daum, Hilson H. [UNESP] Nonlinear dynamics OLFC control SDRE control |
title_short |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions |
title_full |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions |
title_fullStr |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions |
title_full_unstemmed |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions |
title_sort |
Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions |
author |
Daum, Hilson H. [UNESP] |
author_facet |
Daum, Hilson H. [UNESP] Tusset, Angelo M. Ribeiro, Mauricio A. Litak, Grzegorz Bueno, Atila M. [UNESP] Balthazar, Jose M. [UNESP] |
author_role |
author |
author2 |
Tusset, Angelo M. Ribeiro, Mauricio A. Litak, Grzegorz Bueno, Atila M. [UNESP] Balthazar, Jose M. [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Federal Technological University of Paraná Universidade Estadual Paulista (UNESP) Lublin University of Technology |
dc.contributor.author.fl_str_mv |
Daum, Hilson H. [UNESP] Tusset, Angelo M. Ribeiro, Mauricio A. Litak, Grzegorz Bueno, Atila M. [UNESP] Balthazar, Jose M. [UNESP] |
dc.subject.por.fl_str_mv |
Nonlinear dynamics OLFC control SDRE control |
topic |
Nonlinear dynamics OLFC control SDRE control |
description |
In this paper, the dynamical behavior of a four-dimensional magnetohydrodynamic model, consisting of a generalized Lorenz model, is investigated. A nonlinear dynamical analysis is performed using Lyapunov exponents and bifurcation diagrams, focusing on the chaotic and hyperchaotic behaviors associated with the bifurcation parameter (k1) that couples the equations of fluid displacement to the induced magnetic field. The State-dependent Riccati Equation (SDRE) and the Optimal Linear Feedback Control (OLFC) techniques are considered to design the state feedback control system that stabilizes the system to a previously defined orbit. The performance of the control systems are compared showing that the OLFC presents better results. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-05-01T07:58:44Z 2022-05-01T07:58:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1140/epjs/s11734-021-00236-4 European Physical Journal: Special Topics. 1951-6401 1951-6355 http://hdl.handle.net/11449/233324 10.1140/epjs/s11734-021-00236-4 2-s2.0-85111400505 |
url |
http://dx.doi.org/10.1140/epjs/s11734-021-00236-4 http://hdl.handle.net/11449/233324 |
identifier_str_mv |
European Physical Journal: Special Topics. 1951-6401 1951-6355 10.1140/epjs/s11734-021-00236-4 2-s2.0-85111400505 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
European Physical Journal: Special Topics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129051245674496 |