Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions

Detalhes bibliográficos
Autor(a) principal: Daum, Hilson H. [UNESP]
Data de Publicação: 2021
Outros Autores: Tusset, Angelo M., Ribeiro, Mauricio A., Litak, Grzegorz, Bueno, Atila M. [UNESP], Balthazar, Jose M. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1140/epjs/s11734-021-00236-4
http://hdl.handle.net/11449/233324
Resumo: In this paper, the dynamical behavior of a four-dimensional magnetohydrodynamic model, consisting of a generalized Lorenz model, is investigated. A nonlinear dynamical analysis is performed using Lyapunov exponents and bifurcation diagrams, focusing on the chaotic and hyperchaotic behaviors associated with the bifurcation parameter (k1) that couples the equations of fluid displacement to the induced magnetic field. The State-dependent Riccati Equation (SDRE) and the Optimal Linear Feedback Control (OLFC) techniques are considered to design the state feedback control system that stabilizes the system to a previously defined orbit. The performance of the control systems are compared showing that the OLFC presents better results.
id UNSP_c0aee08b469e11935003b095367c5574
oai_identifier_str oai:repositorio.unesp.br:11449/233324
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutionsNonlinear dynamicsOLFC controlSDRE controlIn this paper, the dynamical behavior of a four-dimensional magnetohydrodynamic model, consisting of a generalized Lorenz model, is investigated. A nonlinear dynamical analysis is performed using Lyapunov exponents and bifurcation diagrams, focusing on the chaotic and hyperchaotic behaviors associated with the bifurcation parameter (k1) that couples the equations of fluid displacement to the induced magnetic field. The State-dependent Riccati Equation (SDRE) and the Optimal Linear Feedback Control (OLFC) techniques are considered to design the state feedback control system that stabilizes the system to a previously defined orbit. The performance of the control systems are compared showing that the OLFC presents better results.Federal Technological University of ParanáSchool of Engineering São Paulo State UniversityFaculty of Mechanical Engineering Lublin University of TechnologyInstitute of Science and Technology São Paulo State UniversitySchool of Engineering São Paulo State UniversityInstitute of Science and Technology São Paulo State UniversityFederal Technological University of ParanáUniversidade Estadual Paulista (UNESP)Lublin University of TechnologyDaum, Hilson H. [UNESP]Tusset, Angelo M.Ribeiro, Mauricio A.Litak, GrzegorzBueno, Atila M. [UNESP]Balthazar, Jose M. [UNESP]2022-05-01T07:58:44Z2022-05-01T07:58:44Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1140/epjs/s11734-021-00236-4European Physical Journal: Special Topics.1951-64011951-6355http://hdl.handle.net/11449/23332410.1140/epjs/s11734-021-00236-42-s2.0-85111400505Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEuropean Physical Journal: Special Topicsinfo:eu-repo/semantics/openAccess2022-05-01T07:58:44Zoai:repositorio.unesp.br:11449/233324Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:19:10.755172Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
title Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
spellingShingle Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
Daum, Hilson H. [UNESP]
Nonlinear dynamics
OLFC control
SDRE control
title_short Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
title_full Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
title_fullStr Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
title_full_unstemmed Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
title_sort Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
author Daum, Hilson H. [UNESP]
author_facet Daum, Hilson H. [UNESP]
Tusset, Angelo M.
Ribeiro, Mauricio A.
Litak, Grzegorz
Bueno, Atila M. [UNESP]
Balthazar, Jose M. [UNESP]
author_role author
author2 Tusset, Angelo M.
Ribeiro, Mauricio A.
Litak, Grzegorz
Bueno, Atila M. [UNESP]
Balthazar, Jose M. [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Federal Technological University of Paraná
Universidade Estadual Paulista (UNESP)
Lublin University of Technology
dc.contributor.author.fl_str_mv Daum, Hilson H. [UNESP]
Tusset, Angelo M.
Ribeiro, Mauricio A.
Litak, Grzegorz
Bueno, Atila M. [UNESP]
Balthazar, Jose M. [UNESP]
dc.subject.por.fl_str_mv Nonlinear dynamics
OLFC control
SDRE control
topic Nonlinear dynamics
OLFC control
SDRE control
description In this paper, the dynamical behavior of a four-dimensional magnetohydrodynamic model, consisting of a generalized Lorenz model, is investigated. A nonlinear dynamical analysis is performed using Lyapunov exponents and bifurcation diagrams, focusing on the chaotic and hyperchaotic behaviors associated with the bifurcation parameter (k1) that couples the equations of fluid displacement to the induced magnetic field. The State-dependent Riccati Equation (SDRE) and the Optimal Linear Feedback Control (OLFC) techniques are considered to design the state feedback control system that stabilizes the system to a previously defined orbit. The performance of the control systems are compared showing that the OLFC presents better results.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-05-01T07:58:44Z
2022-05-01T07:58:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1140/epjs/s11734-021-00236-4
European Physical Journal: Special Topics.
1951-6401
1951-6355
http://hdl.handle.net/11449/233324
10.1140/epjs/s11734-021-00236-4
2-s2.0-85111400505
url http://dx.doi.org/10.1140/epjs/s11734-021-00236-4
http://hdl.handle.net/11449/233324
identifier_str_mv European Physical Journal: Special Topics.
1951-6401
1951-6355
10.1140/epjs/s11734-021-00236-4
2-s2.0-85111400505
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv European Physical Journal: Special Topics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129051245674496