Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s13538-021-00943-2 http://hdl.handle.net/11449/222250 |
Resumo: | In this work, dynamical analysis and synchronization control for a four-dimensional Lorenz system are presented. Numerical simulations have shown that for certain parameters, the system has chaotic or recurrent behavior. The chaotic behavior is analyzed by means of phase portraits, bifurcation diagram, fast Fourier transform, and Lyapunov exponents calculation. The synchronization control strategy involves the application of two control signals: a nonlinear feedforward control to maintain the synchronization and a state feedback control to synchronize with the system. Two control strategies are presented for the feedback control project, one considering the State-Dependent Riccati Equation (SDRE) accounting for a nonlinear state matrix and a second one accounting for the Optimal Linear Feedback Control (OLFC), whose state matrix is linear. In addition, the control robustness is investigated through analyzing parametric errors. |
id |
UNSP_f381fc3d485e85ebb0f4f641b56c6d68 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/222250 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Dynamic Analysis and Synchronization for a System with Hyperchaotic BehaviorFeedforward controlLorenz systemOLFC controlSDRE controlSynchronizationIn this work, dynamical analysis and synchronization control for a four-dimensional Lorenz system are presented. Numerical simulations have shown that for certain parameters, the system has chaotic or recurrent behavior. The chaotic behavior is analyzed by means of phase portraits, bifurcation diagram, fast Fourier transform, and Lyapunov exponents calculation. The synchronization control strategy involves the application of two control signals: a nonlinear feedforward control to maintain the synchronization and a state feedback control to synchronize with the system. Two control strategies are presented for the feedback control project, one considering the State-Dependent Riccati Equation (SDRE) accounting for a nonlinear state matrix and a second one accounting for the Optimal Linear Feedback Control (OLFC), whose state matrix is linear. In addition, the control robustness is investigated through analyzing parametric errors.Department of Electrical Engineering Sao Paulo State UniversityDepartment of Electrical Engineering Federal University of Technology–Parana (UTFPR)Department of Electrical Engineering Sao Paulo State UniversityUniversidade Estadual Paulista (UNESP)Federal University of Technology–Parana (UTFPR)Daũm, Hilson H. [UNESP]Rocha, Rodrigo T.Balthazar, Jose M. [UNESP]Tusset, Angelo M.2022-04-28T19:43:35Z2022-04-28T19:43:35Z2021-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1333-1345http://dx.doi.org/10.1007/s13538-021-00943-2Brazilian Journal of Physics, v. 51, n. 5, p. 1333-1345, 2021.1678-44480103-9733http://hdl.handle.net/11449/22225010.1007/s13538-021-00943-22-s2.0-85113155755Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Physicsinfo:eu-repo/semantics/openAccess2022-04-28T19:43:35Zoai:repositorio.unesp.br:11449/222250Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:07:55.379172Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior |
title |
Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior |
spellingShingle |
Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior Daũm, Hilson H. [UNESP] Feedforward control Lorenz system OLFC control SDRE control Synchronization |
title_short |
Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior |
title_full |
Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior |
title_fullStr |
Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior |
title_full_unstemmed |
Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior |
title_sort |
Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior |
author |
Daũm, Hilson H. [UNESP] |
author_facet |
Daũm, Hilson H. [UNESP] Rocha, Rodrigo T. Balthazar, Jose M. [UNESP] Tusset, Angelo M. |
author_role |
author |
author2 |
Rocha, Rodrigo T. Balthazar, Jose M. [UNESP] Tusset, Angelo M. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Federal University of Technology–Parana (UTFPR) |
dc.contributor.author.fl_str_mv |
Daũm, Hilson H. [UNESP] Rocha, Rodrigo T. Balthazar, Jose M. [UNESP] Tusset, Angelo M. |
dc.subject.por.fl_str_mv |
Feedforward control Lorenz system OLFC control SDRE control Synchronization |
topic |
Feedforward control Lorenz system OLFC control SDRE control Synchronization |
description |
In this work, dynamical analysis and synchronization control for a four-dimensional Lorenz system are presented. Numerical simulations have shown that for certain parameters, the system has chaotic or recurrent behavior. The chaotic behavior is analyzed by means of phase portraits, bifurcation diagram, fast Fourier transform, and Lyapunov exponents calculation. The synchronization control strategy involves the application of two control signals: a nonlinear feedforward control to maintain the synchronization and a state feedback control to synchronize with the system. Two control strategies are presented for the feedback control project, one considering the State-Dependent Riccati Equation (SDRE) accounting for a nonlinear state matrix and a second one accounting for the Optimal Linear Feedback Control (OLFC), whose state matrix is linear. In addition, the control robustness is investigated through analyzing parametric errors. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-01 2022-04-28T19:43:35Z 2022-04-28T19:43:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s13538-021-00943-2 Brazilian Journal of Physics, v. 51, n. 5, p. 1333-1345, 2021. 1678-4448 0103-9733 http://hdl.handle.net/11449/222250 10.1007/s13538-021-00943-2 2-s2.0-85113155755 |
url |
http://dx.doi.org/10.1007/s13538-021-00943-2 http://hdl.handle.net/11449/222250 |
identifier_str_mv |
Brazilian Journal of Physics, v. 51, n. 5, p. 1333-1345, 2021. 1678-4448 0103-9733 10.1007/s13538-021-00943-2 2-s2.0-85113155755 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brazilian Journal of Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1333-1345 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128320237207552 |