Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior

Detalhes bibliográficos
Autor(a) principal: Daũm, Hilson H. [UNESP]
Data de Publicação: 2021
Outros Autores: Rocha, Rodrigo T., Balthazar, Jose M. [UNESP], Tusset, Angelo M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s13538-021-00943-2
http://hdl.handle.net/11449/222250
Resumo: In this work, dynamical analysis and synchronization control for a four-dimensional Lorenz system are presented. Numerical simulations have shown that for certain parameters, the system has chaotic or recurrent behavior. The chaotic behavior is analyzed by means of phase portraits, bifurcation diagram, fast Fourier transform, and Lyapunov exponents calculation. The synchronization control strategy involves the application of two control signals: a nonlinear feedforward control to maintain the synchronization and a state feedback control to synchronize with the system. Two control strategies are presented for the feedback control project, one considering the State-Dependent Riccati Equation (SDRE) accounting for a nonlinear state matrix and a second one accounting for the Optimal Linear Feedback Control (OLFC), whose state matrix is linear. In addition, the control robustness is investigated through analyzing parametric errors.
id UNSP_f381fc3d485e85ebb0f4f641b56c6d68
oai_identifier_str oai:repositorio.unesp.br:11449/222250
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Dynamic Analysis and Synchronization for a System with Hyperchaotic BehaviorFeedforward controlLorenz systemOLFC controlSDRE controlSynchronizationIn this work, dynamical analysis and synchronization control for a four-dimensional Lorenz system are presented. Numerical simulations have shown that for certain parameters, the system has chaotic or recurrent behavior. The chaotic behavior is analyzed by means of phase portraits, bifurcation diagram, fast Fourier transform, and Lyapunov exponents calculation. The synchronization control strategy involves the application of two control signals: a nonlinear feedforward control to maintain the synchronization and a state feedback control to synchronize with the system. Two control strategies are presented for the feedback control project, one considering the State-Dependent Riccati Equation (SDRE) accounting for a nonlinear state matrix and a second one accounting for the Optimal Linear Feedback Control (OLFC), whose state matrix is linear. In addition, the control robustness is investigated through analyzing parametric errors.Department of Electrical Engineering Sao Paulo State UniversityDepartment of Electrical Engineering Federal University of Technology–Parana (UTFPR)Department of Electrical Engineering Sao Paulo State UniversityUniversidade Estadual Paulista (UNESP)Federal University of Technology–Parana (UTFPR)Daũm, Hilson H. [UNESP]Rocha, Rodrigo T.Balthazar, Jose M. [UNESP]Tusset, Angelo M.2022-04-28T19:43:35Z2022-04-28T19:43:35Z2021-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1333-1345http://dx.doi.org/10.1007/s13538-021-00943-2Brazilian Journal of Physics, v. 51, n. 5, p. 1333-1345, 2021.1678-44480103-9733http://hdl.handle.net/11449/22225010.1007/s13538-021-00943-22-s2.0-85113155755Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Physicsinfo:eu-repo/semantics/openAccess2022-04-28T19:43:35Zoai:repositorio.unesp.br:11449/222250Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:07:55.379172Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
title Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
spellingShingle Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
Daũm, Hilson H. [UNESP]
Feedforward control
Lorenz system
OLFC control
SDRE control
Synchronization
title_short Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
title_full Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
title_fullStr Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
title_full_unstemmed Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
title_sort Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
author Daũm, Hilson H. [UNESP]
author_facet Daũm, Hilson H. [UNESP]
Rocha, Rodrigo T.
Balthazar, Jose M. [UNESP]
Tusset, Angelo M.
author_role author
author2 Rocha, Rodrigo T.
Balthazar, Jose M. [UNESP]
Tusset, Angelo M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Federal University of Technology–Parana (UTFPR)
dc.contributor.author.fl_str_mv Daũm, Hilson H. [UNESP]
Rocha, Rodrigo T.
Balthazar, Jose M. [UNESP]
Tusset, Angelo M.
dc.subject.por.fl_str_mv Feedforward control
Lorenz system
OLFC control
SDRE control
Synchronization
topic Feedforward control
Lorenz system
OLFC control
SDRE control
Synchronization
description In this work, dynamical analysis and synchronization control for a four-dimensional Lorenz system are presented. Numerical simulations have shown that for certain parameters, the system has chaotic or recurrent behavior. The chaotic behavior is analyzed by means of phase portraits, bifurcation diagram, fast Fourier transform, and Lyapunov exponents calculation. The synchronization control strategy involves the application of two control signals: a nonlinear feedforward control to maintain the synchronization and a state feedback control to synchronize with the system. Two control strategies are presented for the feedback control project, one considering the State-Dependent Riccati Equation (SDRE) accounting for a nonlinear state matrix and a second one accounting for the Optimal Linear Feedback Control (OLFC), whose state matrix is linear. In addition, the control robustness is investigated through analyzing parametric errors.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-01
2022-04-28T19:43:35Z
2022-04-28T19:43:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s13538-021-00943-2
Brazilian Journal of Physics, v. 51, n. 5, p. 1333-1345, 2021.
1678-4448
0103-9733
http://hdl.handle.net/11449/222250
10.1007/s13538-021-00943-2
2-s2.0-85113155755
url http://dx.doi.org/10.1007/s13538-021-00943-2
http://hdl.handle.net/11449/222250
identifier_str_mv Brazilian Journal of Physics, v. 51, n. 5, p. 1333-1345, 2021.
1678-4448
0103-9733
10.1007/s13538-021-00943-2
2-s2.0-85113155755
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Brazilian Journal of Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1333-1345
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128320237207552