Integral trace form of extensions of degree pq

Detalhes bibliográficos
Autor(a) principal: Moro, Eliton M. [UNESP]
Data de Publicação: 2021
Outros Autores: Andrade, Antonio A. [UNESP], Alves, Carina [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1142/S0219498822501031
http://hdl.handle.net/11449/207331
Resumo: In this work, we present the integral trace form TrM/Q(x2) of a cyclic extension M/Q with degree pq, where M = KL, p and q are distinct odd primes, the conductor of M is a square free integer, and x belongs to the ring of algebraic integers OM of M. The integral trace form of M/Q allows one to calculate the packing radius of lattices constructed via the canonical (or twisted) homomorphism of submodules of OM
id UNSP_c1437d502b26c049cd913d1903557ed4
oai_identifier_str oai:repositorio.unesp.br:11449/207331
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Integral trace form of extensions of degree pqAlgebraic latticeIntegral trace formNumber fieldIn this work, we present the integral trace form TrM/Q(x2) of a cyclic extension M/Q with degree pq, where M = KL, p and q are distinct odd primes, the conductor of M is a square free integer, and x belongs to the ring of algebraic integers OM of M. The integral trace form of M/Q allows one to calculate the packing radius of lattices constructed via the canonical (or twisted) homomorphism of submodules of OMDepartment of Mathematics São Paulo State University (Unesp) Institute of Biosciences Humanites and Exact Sciences (Ibilce) Campus São José do Rio PretoDepartment of Mathematics São Paulo State University (Unesp) Institute of Geosciences and Exact Sciences (Igce) Campus Rio ClaroDepartment of Mathematics São Paulo State University (Unesp) Institute of Biosciences Humanites and Exact Sciences (Ibilce) Campus São José do Rio PretoDepartment of Mathematics São Paulo State University (Unesp) Institute of Geosciences and Exact Sciences (Igce) Campus Rio ClaroUniversidade Estadual Paulista (Unesp)Moro, Eliton M. [UNESP]Andrade, Antonio A. [UNESP]Alves, Carina [UNESP]2021-06-25T10:53:23Z2021-06-25T10:53:23Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1142/S0219498822501031Journal of Algebra and its Applications.0219-4988http://hdl.handle.net/11449/20733110.1142/S02194988225010312-s2.0-85101376657Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Algebra and its Applicationsinfo:eu-repo/semantics/openAccess2021-10-23T16:52:05Zoai:repositorio.unesp.br:11449/207331Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:14:59.647873Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Integral trace form of extensions of degree pq
title Integral trace form of extensions of degree pq
spellingShingle Integral trace form of extensions of degree pq
Moro, Eliton M. [UNESP]
Algebraic lattice
Integral trace form
Number field
title_short Integral trace form of extensions of degree pq
title_full Integral trace form of extensions of degree pq
title_fullStr Integral trace form of extensions of degree pq
title_full_unstemmed Integral trace form of extensions of degree pq
title_sort Integral trace form of extensions of degree pq
author Moro, Eliton M. [UNESP]
author_facet Moro, Eliton M. [UNESP]
Andrade, Antonio A. [UNESP]
Alves, Carina [UNESP]
author_role author
author2 Andrade, Antonio A. [UNESP]
Alves, Carina [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Moro, Eliton M. [UNESP]
Andrade, Antonio A. [UNESP]
Alves, Carina [UNESP]
dc.subject.por.fl_str_mv Algebraic lattice
Integral trace form
Number field
topic Algebraic lattice
Integral trace form
Number field
description In this work, we present the integral trace form TrM/Q(x2) of a cyclic extension M/Q with degree pq, where M = KL, p and q are distinct odd primes, the conductor of M is a square free integer, and x belongs to the ring of algebraic integers OM of M. The integral trace form of M/Q allows one to calculate the packing radius of lattices constructed via the canonical (or twisted) homomorphism of submodules of OM
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:53:23Z
2021-06-25T10:53:23Z
2021-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1142/S0219498822501031
Journal of Algebra and its Applications.
0219-4988
http://hdl.handle.net/11449/207331
10.1142/S0219498822501031
2-s2.0-85101376657
url http://dx.doi.org/10.1142/S0219498822501031
http://hdl.handle.net/11449/207331
identifier_str_mv Journal of Algebra and its Applications.
0219-4988
10.1142/S0219498822501031
2-s2.0-85101376657
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Algebra and its Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129408935919616