Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars

Detalhes bibliográficos
Autor(a) principal: Carvalho, Lívia C. [UNESP]
Data de Publicação: 2018
Outros Autores: Morais, Camilo L. M., Lima, Kássio M. G., Leite, Gustavo W. P. [UNESP], Oliveira, Gabriele S. [UNESP], Casagrande, Izabela P. [UNESP], Santos Neto, João P. [UNESP], Teixeira, Gustavo H. A. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s12161-017-1078-9
http://hdl.handle.net/11449/175440
Resumo: Macadamia nut industry is increasingly gaining more space in the food market and the success of the industry and the quality are largely due to the selection of cultivars through macadamia nut breeding programs. Thus, the objective of this study was to investigate the feasibility NIRS coupled to chemometric classification methods, to build a rapid and non-invasive analytical procedure to classify different macadamia cultivars based on intact nuts. Intact nuts of five different macadamia cultivars (HAES 246, IAC 4-20, IAC 2-23, IAC 5-10, and IAC 8-17) were harvested in 2017. Two NIR reflectance spectra were collected per nut, and the mean spectra were used to chemometrics analysis. Principal component analysis-linear discriminant analysis (PCA-LDA) and genetic algorithm-linear discriminant analysis (GA-LDA) were used to develop the classifications models. The GA-LDA approach resulted in accuracy higher than 94.44%, with spectra preprocessed with Savitzky-Golay smoothing. Thus, this approach can be implemented in the macadamia industry, allowing the selection of cultivars based on intact nuts. However, it is recommended that more experimentation to include more data variability in order to increase the classification accuracy to 100%.
id UNSP_c2676c2cad360b1029e525d900f87506
oai_identifier_str oai:repositorio.unesp.br:11449/175440
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia CultivarsChemometricsCultivar classificationGA-LDAMacadamia nutNIRSPCA-LDAMacadamia nut industry is increasingly gaining more space in the food market and the success of the industry and the quality are largely due to the selection of cultivars through macadamia nut breeding programs. Thus, the objective of this study was to investigate the feasibility NIRS coupled to chemometric classification methods, to build a rapid and non-invasive analytical procedure to classify different macadamia cultivars based on intact nuts. Intact nuts of five different macadamia cultivars (HAES 246, IAC 4-20, IAC 2-23, IAC 5-10, and IAC 8-17) were harvested in 2017. Two NIR reflectance spectra were collected per nut, and the mean spectra were used to chemometrics analysis. Principal component analysis-linear discriminant analysis (PCA-LDA) and genetic algorithm-linear discriminant analysis (GA-LDA) were used to develop the classifications models. The GA-LDA approach resulted in accuracy higher than 94.44%, with spectra preprocessed with Savitzky-Golay smoothing. Thus, this approach can be implemented in the macadamia industry, allowing the selection of cultivars based on intact nuts. However, it is recommended that more experimentation to include more data variability in order to increase the classification accuracy to 100%.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Faculdade de Ciências Farmacêuticas (FCFAR) Campus de Araraquara Departamento de Alimentos e Nutrição Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú, km 1 – CP 502Instituto de Química Química Biológica e Quimiometria Universidade Federal do Rio Grande do Norte (UFRN), Avenida Senador Salgado Filho, no. 3000, Bairro de Lagoa NovaFaculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal Departamento de Produção Vegetal Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/nFaculdade de Ciências Farmacêuticas (FCFAR) Campus de Araraquara Departamento de Alimentos e Nutrição Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú, km 1 – CP 502Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal Departamento de Produção Vegetal Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/nUniversidade Estadual Paulista (Unesp)Universidade Federal do Rio Grande do Norte (UFRN)Carvalho, Lívia C. [UNESP]Morais, Camilo L. M.Lima, Kássio M. G.Leite, Gustavo W. P. [UNESP]Oliveira, Gabriele S. [UNESP]Casagrande, Izabela P. [UNESP]Santos Neto, João P. [UNESP]Teixeira, Gustavo H. A. [UNESP]2018-12-11T17:15:50Z2018-12-11T17:15:50Z2018-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1857-1866application/pdfhttp://dx.doi.org/10.1007/s12161-017-1078-9Food Analytical Methods, v. 11, n. 7, p. 1857-1866, 2018.1936-976X1936-9751http://hdl.handle.net/11449/17544010.1007/s12161-017-1078-92-s2.0-850329300732-s2.0-85032930073.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFood Analytical Methods0,662info:eu-repo/semantics/openAccess2024-06-21T12:47:24Zoai:repositorio.unesp.br:11449/175440Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:11:40.826964Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
title Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
spellingShingle Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
Carvalho, Lívia C. [UNESP]
Chemometrics
Cultivar classification
GA-LDA
Macadamia nut
NIRS
PCA-LDA
title_short Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
title_full Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
title_fullStr Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
title_full_unstemmed Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
title_sort Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
author Carvalho, Lívia C. [UNESP]
author_facet Carvalho, Lívia C. [UNESP]
Morais, Camilo L. M.
Lima, Kássio M. G.
Leite, Gustavo W. P. [UNESP]
Oliveira, Gabriele S. [UNESP]
Casagrande, Izabela P. [UNESP]
Santos Neto, João P. [UNESP]
Teixeira, Gustavo H. A. [UNESP]
author_role author
author2 Morais, Camilo L. M.
Lima, Kássio M. G.
Leite, Gustavo W. P. [UNESP]
Oliveira, Gabriele S. [UNESP]
Casagrande, Izabela P. [UNESP]
Santos Neto, João P. [UNESP]
Teixeira, Gustavo H. A. [UNESP]
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal do Rio Grande do Norte (UFRN)
dc.contributor.author.fl_str_mv Carvalho, Lívia C. [UNESP]
Morais, Camilo L. M.
Lima, Kássio M. G.
Leite, Gustavo W. P. [UNESP]
Oliveira, Gabriele S. [UNESP]
Casagrande, Izabela P. [UNESP]
Santos Neto, João P. [UNESP]
Teixeira, Gustavo H. A. [UNESP]
dc.subject.por.fl_str_mv Chemometrics
Cultivar classification
GA-LDA
Macadamia nut
NIRS
PCA-LDA
topic Chemometrics
Cultivar classification
GA-LDA
Macadamia nut
NIRS
PCA-LDA
description Macadamia nut industry is increasingly gaining more space in the food market and the success of the industry and the quality are largely due to the selection of cultivars through macadamia nut breeding programs. Thus, the objective of this study was to investigate the feasibility NIRS coupled to chemometric classification methods, to build a rapid and non-invasive analytical procedure to classify different macadamia cultivars based on intact nuts. Intact nuts of five different macadamia cultivars (HAES 246, IAC 4-20, IAC 2-23, IAC 5-10, and IAC 8-17) were harvested in 2017. Two NIR reflectance spectra were collected per nut, and the mean spectra were used to chemometrics analysis. Principal component analysis-linear discriminant analysis (PCA-LDA) and genetic algorithm-linear discriminant analysis (GA-LDA) were used to develop the classifications models. The GA-LDA approach resulted in accuracy higher than 94.44%, with spectra preprocessed with Savitzky-Golay smoothing. Thus, this approach can be implemented in the macadamia industry, allowing the selection of cultivars based on intact nuts. However, it is recommended that more experimentation to include more data variability in order to increase the classification accuracy to 100%.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:15:50Z
2018-12-11T17:15:50Z
2018-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s12161-017-1078-9
Food Analytical Methods, v. 11, n. 7, p. 1857-1866, 2018.
1936-976X
1936-9751
http://hdl.handle.net/11449/175440
10.1007/s12161-017-1078-9
2-s2.0-85032930073
2-s2.0-85032930073.pdf
url http://dx.doi.org/10.1007/s12161-017-1078-9
http://hdl.handle.net/11449/175440
identifier_str_mv Food Analytical Methods, v. 11, n. 7, p. 1857-1866, 2018.
1936-976X
1936-9751
10.1007/s12161-017-1078-9
2-s2.0-85032930073
2-s2.0-85032930073.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Food Analytical Methods
0,662
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1857-1866
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129593929891840