Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s12161-017-1078-9 http://hdl.handle.net/11449/175440 |
Resumo: | Macadamia nut industry is increasingly gaining more space in the food market and the success of the industry and the quality are largely due to the selection of cultivars through macadamia nut breeding programs. Thus, the objective of this study was to investigate the feasibility NIRS coupled to chemometric classification methods, to build a rapid and non-invasive analytical procedure to classify different macadamia cultivars based on intact nuts. Intact nuts of five different macadamia cultivars (HAES 246, IAC 4-20, IAC 2-23, IAC 5-10, and IAC 8-17) were harvested in 2017. Two NIR reflectance spectra were collected per nut, and the mean spectra were used to chemometrics analysis. Principal component analysis-linear discriminant analysis (PCA-LDA) and genetic algorithm-linear discriminant analysis (GA-LDA) were used to develop the classifications models. The GA-LDA approach resulted in accuracy higher than 94.44%, with spectra preprocessed with Savitzky-Golay smoothing. Thus, this approach can be implemented in the macadamia industry, allowing the selection of cultivars based on intact nuts. However, it is recommended that more experimentation to include more data variability in order to increase the classification accuracy to 100%. |
id |
UNSP_c2676c2cad360b1029e525d900f87506 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175440 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia CultivarsChemometricsCultivar classificationGA-LDAMacadamia nutNIRSPCA-LDAMacadamia nut industry is increasingly gaining more space in the food market and the success of the industry and the quality are largely due to the selection of cultivars through macadamia nut breeding programs. Thus, the objective of this study was to investigate the feasibility NIRS coupled to chemometric classification methods, to build a rapid and non-invasive analytical procedure to classify different macadamia cultivars based on intact nuts. Intact nuts of five different macadamia cultivars (HAES 246, IAC 4-20, IAC 2-23, IAC 5-10, and IAC 8-17) were harvested in 2017. Two NIR reflectance spectra were collected per nut, and the mean spectra were used to chemometrics analysis. Principal component analysis-linear discriminant analysis (PCA-LDA) and genetic algorithm-linear discriminant analysis (GA-LDA) were used to develop the classifications models. The GA-LDA approach resulted in accuracy higher than 94.44%, with spectra preprocessed with Savitzky-Golay smoothing. Thus, this approach can be implemented in the macadamia industry, allowing the selection of cultivars based on intact nuts. However, it is recommended that more experimentation to include more data variability in order to increase the classification accuracy to 100%.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Faculdade de Ciências Farmacêuticas (FCFAR) Campus de Araraquara Departamento de Alimentos e Nutrição Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú, km 1 – CP 502Instituto de Química Química Biológica e Quimiometria Universidade Federal do Rio Grande do Norte (UFRN), Avenida Senador Salgado Filho, no. 3000, Bairro de Lagoa NovaFaculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal Departamento de Produção Vegetal Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/nFaculdade de Ciências Farmacêuticas (FCFAR) Campus de Araraquara Departamento de Alimentos e Nutrição Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú, km 1 – CP 502Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal Departamento de Produção Vegetal Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/nUniversidade Estadual Paulista (Unesp)Universidade Federal do Rio Grande do Norte (UFRN)Carvalho, Lívia C. [UNESP]Morais, Camilo L. M.Lima, Kássio M. G.Leite, Gustavo W. P. [UNESP]Oliveira, Gabriele S. [UNESP]Casagrande, Izabela P. [UNESP]Santos Neto, João P. [UNESP]Teixeira, Gustavo H. A. [UNESP]2018-12-11T17:15:50Z2018-12-11T17:15:50Z2018-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1857-1866application/pdfhttp://dx.doi.org/10.1007/s12161-017-1078-9Food Analytical Methods, v. 11, n. 7, p. 1857-1866, 2018.1936-976X1936-9751http://hdl.handle.net/11449/17544010.1007/s12161-017-1078-92-s2.0-850329300732-s2.0-85032930073.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFood Analytical Methods0,662info:eu-repo/semantics/openAccess2024-06-21T12:47:24Zoai:repositorio.unesp.br:11449/175440Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:11:40.826964Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars |
title |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars |
spellingShingle |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars Carvalho, Lívia C. [UNESP] Chemometrics Cultivar classification GA-LDA Macadamia nut NIRS PCA-LDA |
title_short |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars |
title_full |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars |
title_fullStr |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars |
title_full_unstemmed |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars |
title_sort |
Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars |
author |
Carvalho, Lívia C. [UNESP] |
author_facet |
Carvalho, Lívia C. [UNESP] Morais, Camilo L. M. Lima, Kássio M. G. Leite, Gustavo W. P. [UNESP] Oliveira, Gabriele S. [UNESP] Casagrande, Izabela P. [UNESP] Santos Neto, João P. [UNESP] Teixeira, Gustavo H. A. [UNESP] |
author_role |
author |
author2 |
Morais, Camilo L. M. Lima, Kássio M. G. Leite, Gustavo W. P. [UNESP] Oliveira, Gabriele S. [UNESP] Casagrande, Izabela P. [UNESP] Santos Neto, João P. [UNESP] Teixeira, Gustavo H. A. [UNESP] |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal do Rio Grande do Norte (UFRN) |
dc.contributor.author.fl_str_mv |
Carvalho, Lívia C. [UNESP] Morais, Camilo L. M. Lima, Kássio M. G. Leite, Gustavo W. P. [UNESP] Oliveira, Gabriele S. [UNESP] Casagrande, Izabela P. [UNESP] Santos Neto, João P. [UNESP] Teixeira, Gustavo H. A. [UNESP] |
dc.subject.por.fl_str_mv |
Chemometrics Cultivar classification GA-LDA Macadamia nut NIRS PCA-LDA |
topic |
Chemometrics Cultivar classification GA-LDA Macadamia nut NIRS PCA-LDA |
description |
Macadamia nut industry is increasingly gaining more space in the food market and the success of the industry and the quality are largely due to the selection of cultivars through macadamia nut breeding programs. Thus, the objective of this study was to investigate the feasibility NIRS coupled to chemometric classification methods, to build a rapid and non-invasive analytical procedure to classify different macadamia cultivars based on intact nuts. Intact nuts of five different macadamia cultivars (HAES 246, IAC 4-20, IAC 2-23, IAC 5-10, and IAC 8-17) were harvested in 2017. Two NIR reflectance spectra were collected per nut, and the mean spectra were used to chemometrics analysis. Principal component analysis-linear discriminant analysis (PCA-LDA) and genetic algorithm-linear discriminant analysis (GA-LDA) were used to develop the classifications models. The GA-LDA approach resulted in accuracy higher than 94.44%, with spectra preprocessed with Savitzky-Golay smoothing. Thus, this approach can be implemented in the macadamia industry, allowing the selection of cultivars based on intact nuts. However, it is recommended that more experimentation to include more data variability in order to increase the classification accuracy to 100%. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:15:50Z 2018-12-11T17:15:50Z 2018-07-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s12161-017-1078-9 Food Analytical Methods, v. 11, n. 7, p. 1857-1866, 2018. 1936-976X 1936-9751 http://hdl.handle.net/11449/175440 10.1007/s12161-017-1078-9 2-s2.0-85032930073 2-s2.0-85032930073.pdf |
url |
http://dx.doi.org/10.1007/s12161-017-1078-9 http://hdl.handle.net/11449/175440 |
identifier_str_mv |
Food Analytical Methods, v. 11, n. 7, p. 1857-1866, 2018. 1936-976X 1936-9751 10.1007/s12161-017-1078-9 2-s2.0-85032930073 2-s2.0-85032930073.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Food Analytical Methods 0,662 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1857-1866 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129593929891840 |