Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program

Detalhes bibliográficos
Autor(a) principal: Leite, Daniel Carvalho [UNESP]
Data de Publicação: 2020
Outros Autores: Corrêa, Aretha Arcenio Pimentel [UNESP], Cunha Júnior, Luis Carlos, Lima, Kássio Michell Gomes de, Morais, Camilo de Lelis Medeiros de, Vianna, Viviane Formice [UNESP], Teixeira, Gustavo Henrique de Almeida, Di Mauro, Antonio Orlando [UNESP], Unêda-Trevisoli, Sandra Helena [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jfca.2020.103536
http://hdl.handle.net/11449/198879
Resumo: In soybean (Glycine max L.) breeding programs, segregation is normally observed, and it is not possible to have replicates of individuals because each genotype is a unique copy. Therefore, near-infrared spectroscopy (NIRS) was used as a non-destructive tool to classify soybeans by genotypes and to predict oil content. A total of 260 soybean genotypes were divided into five classes, which were composed of 32, 52, 82, 46, and 49 samples of the BV, BVV, EB, JAB, and L class, respectively. NIR spectra were obtained using oven-dried samples (80 g) in a reflectance mode. A successive projection algorithm and genetic algorithm with linear discriminant analysis discriminated genotypes of the low (L class) from the high (EB class) for oil content (88.89% accuracy). The partial least square regression models for oil content were considered good (root mean square error of prediction of 0.96%). Therefore, NIRS can be used as a non-destructive tool in soybean breeding programs, but further investigation is necessary to improve the robustness of the models. It is important to note that to use the models, it is necessary to collect NIR spectra from dry soybean samples.
id UNSP_d612d64ee1c9ccda4ecf6c471b12d95f
oai_identifier_str oai:repositorio.unesp.br:11449/198879
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding programGenetic algorithm (GA) with LDA (GA-LDA)Glycine maxL.PCA with linear discriminant analysis (PCA-LDA)Principal component analysis (PCA)Successive projection algorithm (SPA) with LDA (SPA-LDA)In soybean (Glycine max L.) breeding programs, segregation is normally observed, and it is not possible to have replicates of individuals because each genotype is a unique copy. Therefore, near-infrared spectroscopy (NIRS) was used as a non-destructive tool to classify soybeans by genotypes and to predict oil content. A total of 260 soybean genotypes were divided into five classes, which were composed of 32, 52, 82, 46, and 49 samples of the BV, BVV, EB, JAB, and L class, respectively. NIR spectra were obtained using oven-dried samples (80 g) in a reflectance mode. A successive projection algorithm and genetic algorithm with linear discriminant analysis discriminated genotypes of the low (L class) from the high (EB class) for oil content (88.89% accuracy). The partial least square regression models for oil content were considered good (root mean square error of prediction of 0.96%). Therefore, NIRS can be used as a non-destructive tool in soybean breeding programs, but further investigation is necessary to improve the robustness of the models. It is important to note that to use the models, it is necessary to collect NIR spectra from dry soybean samples.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual Paulista (UNESP) Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal, Via deacesso Prof. Paulo Donato Castellane s/nUniversidade Federal de Goiás (UFG) Escola de Agronomia (EA) Goânia – GO, Rodovia Goiânia/Nova Veneza Km 0 Campos SamambaiaUniversidade Federal do Rio Grande do Norte (UFRN) Instituto de Química Química Biológica e Quimiometria Avenida Senador Salgado Filho, n° 3000, Bairro de Lagoa NovaSchool of Pharmacy and Biomedical Sciences University of Central Lancashire, PrestonUniversidade Estadual Paulista (UNESP) Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal, Via deacesso Prof. Paulo Donato Castellane s/nFAPESP: 2011/12958-9Universidade Estadual Paulista (Unesp)Universidade Federal de Goiás (UFG)Avenida Senador Salgado FilhoUniversity of Central LancashireLeite, Daniel Carvalho [UNESP]Corrêa, Aretha Arcenio Pimentel [UNESP]Cunha Júnior, Luis CarlosLima, Kássio Michell Gomes deMorais, Camilo de Lelis Medeiros deVianna, Viviane Formice [UNESP]Teixeira, Gustavo Henrique de AlmeidaDi Mauro, Antonio Orlando [UNESP]Unêda-Trevisoli, Sandra Helena [UNESP]2020-12-12T01:24:27Z2020-12-12T01:24:27Z2020-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.jfca.2020.103536Journal of Food Composition and Analysis, v. 91.0889-1575http://hdl.handle.net/11449/19887910.1016/j.jfca.2020.1035362-s2.0-8508534177850248675334980260000-0003-3060-924XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Food Composition and Analysisinfo:eu-repo/semantics/openAccess2021-10-23T02:05:27Zoai:repositorio.unesp.br:11449/198879Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:44:23.988089Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program
title Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program
spellingShingle Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program
Leite, Daniel Carvalho [UNESP]
Genetic algorithm (GA) with LDA (GA-LDA)
Glycine maxL.
PCA with linear discriminant analysis (PCA-LDA)
Principal component analysis (PCA)
Successive projection algorithm (SPA) with LDA (SPA-LDA)
title_short Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program
title_full Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program
title_fullStr Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program
title_full_unstemmed Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program
title_sort Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program
author Leite, Daniel Carvalho [UNESP]
author_facet Leite, Daniel Carvalho [UNESP]
Corrêa, Aretha Arcenio Pimentel [UNESP]
Cunha Júnior, Luis Carlos
Lima, Kássio Michell Gomes de
Morais, Camilo de Lelis Medeiros de
Vianna, Viviane Formice [UNESP]
Teixeira, Gustavo Henrique de Almeida
Di Mauro, Antonio Orlando [UNESP]
Unêda-Trevisoli, Sandra Helena [UNESP]
author_role author
author2 Corrêa, Aretha Arcenio Pimentel [UNESP]
Cunha Júnior, Luis Carlos
Lima, Kássio Michell Gomes de
Morais, Camilo de Lelis Medeiros de
Vianna, Viviane Formice [UNESP]
Teixeira, Gustavo Henrique de Almeida
Di Mauro, Antonio Orlando [UNESP]
Unêda-Trevisoli, Sandra Helena [UNESP]
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de Goiás (UFG)
Avenida Senador Salgado Filho
University of Central Lancashire
dc.contributor.author.fl_str_mv Leite, Daniel Carvalho [UNESP]
Corrêa, Aretha Arcenio Pimentel [UNESP]
Cunha Júnior, Luis Carlos
Lima, Kássio Michell Gomes de
Morais, Camilo de Lelis Medeiros de
Vianna, Viviane Formice [UNESP]
Teixeira, Gustavo Henrique de Almeida
Di Mauro, Antonio Orlando [UNESP]
Unêda-Trevisoli, Sandra Helena [UNESP]
dc.subject.por.fl_str_mv Genetic algorithm (GA) with LDA (GA-LDA)
Glycine maxL.
PCA with linear discriminant analysis (PCA-LDA)
Principal component analysis (PCA)
Successive projection algorithm (SPA) with LDA (SPA-LDA)
topic Genetic algorithm (GA) with LDA (GA-LDA)
Glycine maxL.
PCA with linear discriminant analysis (PCA-LDA)
Principal component analysis (PCA)
Successive projection algorithm (SPA) with LDA (SPA-LDA)
description In soybean (Glycine max L.) breeding programs, segregation is normally observed, and it is not possible to have replicates of individuals because each genotype is a unique copy. Therefore, near-infrared spectroscopy (NIRS) was used as a non-destructive tool to classify soybeans by genotypes and to predict oil content. A total of 260 soybean genotypes were divided into five classes, which were composed of 32, 52, 82, 46, and 49 samples of the BV, BVV, EB, JAB, and L class, respectively. NIR spectra were obtained using oven-dried samples (80 g) in a reflectance mode. A successive projection algorithm and genetic algorithm with linear discriminant analysis discriminated genotypes of the low (L class) from the high (EB class) for oil content (88.89% accuracy). The partial least square regression models for oil content were considered good (root mean square error of prediction of 0.96%). Therefore, NIRS can be used as a non-destructive tool in soybean breeding programs, but further investigation is necessary to improve the robustness of the models. It is important to note that to use the models, it is necessary to collect NIR spectra from dry soybean samples.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:24:27Z
2020-12-12T01:24:27Z
2020-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jfca.2020.103536
Journal of Food Composition and Analysis, v. 91.
0889-1575
http://hdl.handle.net/11449/198879
10.1016/j.jfca.2020.103536
2-s2.0-85085341778
5024867533498026
0000-0003-3060-924X
url http://dx.doi.org/10.1016/j.jfca.2020.103536
http://hdl.handle.net/11449/198879
identifier_str_mv Journal of Food Composition and Analysis, v. 91.
0889-1575
10.1016/j.jfca.2020.103536
2-s2.0-85085341778
5024867533498026
0000-0003-3060-924X
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Food Composition and Analysis
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129111078469632