Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/1806-9126-RBEF-2021-0068 http://hdl.handle.net/11449/211902 |
Resumo: | It is presented a way to obtain the closed form for Green’s function related to the nonhomogeneous one-dimensional Helmholtz equation with homogeneous Dirichlet conditions on the boundary of the domain from its Fourier sine series representation. A closed form for the sum of the series ∑k=1∞sinkxsinky/(k2-α2) is found in the process. |
id |
UNSP_c684fb1f1d238f7a7ad64224d41974f0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/211902 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine seriesGreen’s function methodNonhomogeneous Helmholtz equationHomogeneous Dirichlet conditions.It is presented a way to obtain the closed form for Green’s function related to the nonhomogeneous one-dimensional Helmholtz equation with homogeneous Dirichlet conditions on the boundary of the domain from its Fourier sine series representation. A closed form for the sum of the series ∑k=1∞sinkxsinky/(k2-α2) is found in the process.Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de FísicaUniversidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de FísicaSociedade Brasileira de FísicaUniversidade Estadual Paulista (Unesp)Castro, Antonio S. De [UNESP]2021-07-14T10:31:21Z2021-07-14T10:31:21Z2021-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article-application/pdfhttp://dx.doi.org/10.1590/1806-9126-RBEF-2021-0068Revista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 43, p. -, 2021.1806-11171806-9126http://hdl.handle.net/11449/21190210.1590/1806-9126-RBEF-2021-0068S1806-11172021000100101S1806-11172021000100101.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Ensino de Físicainfo:eu-repo/semantics/openAccess2024-01-16T06:26:13Zoai:repositorio.unesp.br:11449/211902Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:07:45.503989Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series |
title |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series |
spellingShingle |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series Castro, Antonio S. De [UNESP] Green’s function method Nonhomogeneous Helmholtz equation Homogeneous Dirichlet conditions. |
title_short |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series |
title_full |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series |
title_fullStr |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series |
title_full_unstemmed |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series |
title_sort |
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series |
author |
Castro, Antonio S. De [UNESP] |
author_facet |
Castro, Antonio S. De [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Castro, Antonio S. De [UNESP] |
dc.subject.por.fl_str_mv |
Green’s function method Nonhomogeneous Helmholtz equation Homogeneous Dirichlet conditions. |
topic |
Green’s function method Nonhomogeneous Helmholtz equation Homogeneous Dirichlet conditions. |
description |
It is presented a way to obtain the closed form for Green’s function related to the nonhomogeneous one-dimensional Helmholtz equation with homogeneous Dirichlet conditions on the boundary of the domain from its Fourier sine series representation. A closed form for the sum of the series ∑k=1∞sinkxsinky/(k2-α2) is found in the process. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-14T10:31:21Z 2021-07-14T10:31:21Z 2021-04-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/1806-9126-RBEF-2021-0068 Revista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 43, p. -, 2021. 1806-1117 1806-9126 http://hdl.handle.net/11449/211902 10.1590/1806-9126-RBEF-2021-0068 S1806-11172021000100101 S1806-11172021000100101.pdf |
url |
http://dx.doi.org/10.1590/1806-9126-RBEF-2021-0068 http://hdl.handle.net/11449/211902 |
identifier_str_mv |
Revista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 43, p. -, 2021. 1806-1117 1806-9126 10.1590/1806-9126-RBEF-2021-0068 S1806-11172021000100101 S1806-11172021000100101.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Revista Brasileira de Ensino de Física |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
- application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129491736723456 |