Automated acoustic detection of a cicadid pest in coffee plantations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.compag.2020.105215 http://hdl.handle.net/11449/201480 |
Resumo: | South american countries are the largest coffee producers in the world. Nevertheless, Cicadidae, the colloquial term for cicadas, is one of the key pests responsible for dropping the production. Currently, there is no electronic device or autonomous technological resource commercially available for detecting certain species of cicadas in the crop, penalizing the farmers on the management of that insect. Thus, this article presents a novel algorithm implemented in a low-cost real-time plataform for the acoustic detection of cicadas in plantations. Based on the Bark Scale (BS), Wavelet-packet Transform (WPT), Paraconsistent Feature Engineering (PFE) and Support Vector Machines (SVMs), the proposed technique was assessed with a database of 1366 recordings, presenting a value of accuracy of 96.41% for the distinction among cicadas and background noise, where the latter includes sounds from mechanical devices, birds, animals in general and speech, among others. |
id |
UNSP_c8d26eef25d58bc14b986425e7980e91 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201480 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Automated acoustic detection of a cicadid pest in coffee plantationsBark Scale (BS)CicadaParaconsistent Feature Engineering (PFE)Support Vector Machine (SVM)Wavelet-packet Transform (WPT)South american countries are the largest coffee producers in the world. Nevertheless, Cicadidae, the colloquial term for cicadas, is one of the key pests responsible for dropping the production. Currently, there is no electronic device or autonomous technological resource commercially available for detecting certain species of cicadas in the crop, penalizing the farmers on the management of that insect. Thus, this article presents a novel algorithm implemented in a low-cost real-time plataform for the acoustic detection of cicadas in plantations. Based on the Bark Scale (BS), Wavelet-packet Transform (WPT), Paraconsistent Feature Engineering (PFE) and Support Vector Machines (SVMs), the proposed technique was assessed with a database of 1366 recordings, presenting a value of accuracy of 96.41% for the distinction among cicadas and background noise, where the latter includes sounds from mechanical devices, birds, animals in general and speech, among others.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto Federal de São Paulo, Av. C-1, 250Instituto de Biociências Letras e Ciências Exatas Unesp – Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000Universidade de São Paulo, Av. Trabalhador São-carlense, 400Universidade Estadual de Goiás, Campus Iporá, Av. R2 Qd.1, s/n, Novo Horizonte IIInstituto de Biociências Letras e Ciências Exatas Unesp – Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000CNPq: 306808/2018-8CNPq: 800694/2016-3Instituto Federal de São PauloUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Universidade Estadual de GoiásEscola, João Paulo LemosGuido, Rodrigo Capobianco [UNESP]da Silva, Ivan NunesCardoso, Alexandre MoraesMaccagnan, Douglas Henrique BotturaDezotti, Artur Kenzo2020-12-12T02:33:37Z2020-12-12T02:33:37Z2020-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.compag.2020.105215Computers and Electronics in Agriculture, v. 169.0168-1699http://hdl.handle.net/11449/20148010.1016/j.compag.2020.1052152-s2.0-8507808528865420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputers and Electronics in Agricultureinfo:eu-repo/semantics/openAccess2021-10-23T03:03:26Zoai:repositorio.unesp.br:11449/201480Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:07:37.753419Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Automated acoustic detection of a cicadid pest in coffee plantations |
title |
Automated acoustic detection of a cicadid pest in coffee plantations |
spellingShingle |
Automated acoustic detection of a cicadid pest in coffee plantations Escola, João Paulo Lemos Bark Scale (BS) Cicada Paraconsistent Feature Engineering (PFE) Support Vector Machine (SVM) Wavelet-packet Transform (WPT) |
title_short |
Automated acoustic detection of a cicadid pest in coffee plantations |
title_full |
Automated acoustic detection of a cicadid pest in coffee plantations |
title_fullStr |
Automated acoustic detection of a cicadid pest in coffee plantations |
title_full_unstemmed |
Automated acoustic detection of a cicadid pest in coffee plantations |
title_sort |
Automated acoustic detection of a cicadid pest in coffee plantations |
author |
Escola, João Paulo Lemos |
author_facet |
Escola, João Paulo Lemos Guido, Rodrigo Capobianco [UNESP] da Silva, Ivan Nunes Cardoso, Alexandre Moraes Maccagnan, Douglas Henrique Bottura Dezotti, Artur Kenzo |
author_role |
author |
author2 |
Guido, Rodrigo Capobianco [UNESP] da Silva, Ivan Nunes Cardoso, Alexandre Moraes Maccagnan, Douglas Henrique Bottura Dezotti, Artur Kenzo |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Instituto Federal de São Paulo Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) Universidade Estadual de Goiás |
dc.contributor.author.fl_str_mv |
Escola, João Paulo Lemos Guido, Rodrigo Capobianco [UNESP] da Silva, Ivan Nunes Cardoso, Alexandre Moraes Maccagnan, Douglas Henrique Bottura Dezotti, Artur Kenzo |
dc.subject.por.fl_str_mv |
Bark Scale (BS) Cicada Paraconsistent Feature Engineering (PFE) Support Vector Machine (SVM) Wavelet-packet Transform (WPT) |
topic |
Bark Scale (BS) Cicada Paraconsistent Feature Engineering (PFE) Support Vector Machine (SVM) Wavelet-packet Transform (WPT) |
description |
South american countries are the largest coffee producers in the world. Nevertheless, Cicadidae, the colloquial term for cicadas, is one of the key pests responsible for dropping the production. Currently, there is no electronic device or autonomous technological resource commercially available for detecting certain species of cicadas in the crop, penalizing the farmers on the management of that insect. Thus, this article presents a novel algorithm implemented in a low-cost real-time plataform for the acoustic detection of cicadas in plantations. Based on the Bark Scale (BS), Wavelet-packet Transform (WPT), Paraconsistent Feature Engineering (PFE) and Support Vector Machines (SVMs), the proposed technique was assessed with a database of 1366 recordings, presenting a value of accuracy of 96.41% for the distinction among cicadas and background noise, where the latter includes sounds from mechanical devices, birds, animals in general and speech, among others. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:33:37Z 2020-12-12T02:33:37Z 2020-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.compag.2020.105215 Computers and Electronics in Agriculture, v. 169. 0168-1699 http://hdl.handle.net/11449/201480 10.1016/j.compag.2020.105215 2-s2.0-85078085288 6542086226808067 0000-0002-0924-8024 |
url |
http://dx.doi.org/10.1016/j.compag.2020.105215 http://hdl.handle.net/11449/201480 |
identifier_str_mv |
Computers and Electronics in Agriculture, v. 169. 0168-1699 10.1016/j.compag.2020.105215 2-s2.0-85078085288 6542086226808067 0000-0002-0924-8024 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computers and Electronics in Agriculture |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129163278680064 |