Automated acoustic detection of a cicadid pest in coffee plantations

Detalhes bibliográficos
Autor(a) principal: Escola, João Paulo Lemos
Data de Publicação: 2020
Outros Autores: Guido, Rodrigo Capobianco [UNESP], da Silva, Ivan Nunes, Cardoso, Alexandre Moraes, Maccagnan, Douglas Henrique Bottura, Dezotti, Artur Kenzo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.compag.2020.105215
http://hdl.handle.net/11449/201480
Resumo: South american countries are the largest coffee producers in the world. Nevertheless, Cicadidae, the colloquial term for cicadas, is one of the key pests responsible for dropping the production. Currently, there is no electronic device or autonomous technological resource commercially available for detecting certain species of cicadas in the crop, penalizing the farmers on the management of that insect. Thus, this article presents a novel algorithm implemented in a low-cost real-time plataform for the acoustic detection of cicadas in plantations. Based on the Bark Scale (BS), Wavelet-packet Transform (WPT), Paraconsistent Feature Engineering (PFE) and Support Vector Machines (SVMs), the proposed technique was assessed with a database of 1366 recordings, presenting a value of accuracy of 96.41% for the distinction among cicadas and background noise, where the latter includes sounds from mechanical devices, birds, animals in general and speech, among others.
id UNSP_c8d26eef25d58bc14b986425e7980e91
oai_identifier_str oai:repositorio.unesp.br:11449/201480
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Automated acoustic detection of a cicadid pest in coffee plantationsBark Scale (BS)CicadaParaconsistent Feature Engineering (PFE)Support Vector Machine (SVM)Wavelet-packet Transform (WPT)South american countries are the largest coffee producers in the world. Nevertheless, Cicadidae, the colloquial term for cicadas, is one of the key pests responsible for dropping the production. Currently, there is no electronic device or autonomous technological resource commercially available for detecting certain species of cicadas in the crop, penalizing the farmers on the management of that insect. Thus, this article presents a novel algorithm implemented in a low-cost real-time plataform for the acoustic detection of cicadas in plantations. Based on the Bark Scale (BS), Wavelet-packet Transform (WPT), Paraconsistent Feature Engineering (PFE) and Support Vector Machines (SVMs), the proposed technique was assessed with a database of 1366 recordings, presenting a value of accuracy of 96.41% for the distinction among cicadas and background noise, where the latter includes sounds from mechanical devices, birds, animals in general and speech, among others.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto Federal de São Paulo, Av. C-1, 250Instituto de Biociências Letras e Ciências Exatas Unesp – Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000Universidade de São Paulo, Av. Trabalhador São-carlense, 400Universidade Estadual de Goiás, Campus Iporá, Av. R2 Qd.1, s/n, Novo Horizonte IIInstituto de Biociências Letras e Ciências Exatas Unesp – Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000CNPq: 306808/2018-8CNPq: 800694/2016-3Instituto Federal de São PauloUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Universidade Estadual de GoiásEscola, João Paulo LemosGuido, Rodrigo Capobianco [UNESP]da Silva, Ivan NunesCardoso, Alexandre MoraesMaccagnan, Douglas Henrique BotturaDezotti, Artur Kenzo2020-12-12T02:33:37Z2020-12-12T02:33:37Z2020-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.compag.2020.105215Computers and Electronics in Agriculture, v. 169.0168-1699http://hdl.handle.net/11449/20148010.1016/j.compag.2020.1052152-s2.0-8507808528865420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputers and Electronics in Agricultureinfo:eu-repo/semantics/openAccess2021-10-23T03:03:26Zoai:repositorio.unesp.br:11449/201480Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:07:37.753419Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Automated acoustic detection of a cicadid pest in coffee plantations
title Automated acoustic detection of a cicadid pest in coffee plantations
spellingShingle Automated acoustic detection of a cicadid pest in coffee plantations
Escola, João Paulo Lemos
Bark Scale (BS)
Cicada
Paraconsistent Feature Engineering (PFE)
Support Vector Machine (SVM)
Wavelet-packet Transform (WPT)
title_short Automated acoustic detection of a cicadid pest in coffee plantations
title_full Automated acoustic detection of a cicadid pest in coffee plantations
title_fullStr Automated acoustic detection of a cicadid pest in coffee plantations
title_full_unstemmed Automated acoustic detection of a cicadid pest in coffee plantations
title_sort Automated acoustic detection of a cicadid pest in coffee plantations
author Escola, João Paulo Lemos
author_facet Escola, João Paulo Lemos
Guido, Rodrigo Capobianco [UNESP]
da Silva, Ivan Nunes
Cardoso, Alexandre Moraes
Maccagnan, Douglas Henrique Bottura
Dezotti, Artur Kenzo
author_role author
author2 Guido, Rodrigo Capobianco [UNESP]
da Silva, Ivan Nunes
Cardoso, Alexandre Moraes
Maccagnan, Douglas Henrique Bottura
Dezotti, Artur Kenzo
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Instituto Federal de São Paulo
Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
Universidade Estadual de Goiás
dc.contributor.author.fl_str_mv Escola, João Paulo Lemos
Guido, Rodrigo Capobianco [UNESP]
da Silva, Ivan Nunes
Cardoso, Alexandre Moraes
Maccagnan, Douglas Henrique Bottura
Dezotti, Artur Kenzo
dc.subject.por.fl_str_mv Bark Scale (BS)
Cicada
Paraconsistent Feature Engineering (PFE)
Support Vector Machine (SVM)
Wavelet-packet Transform (WPT)
topic Bark Scale (BS)
Cicada
Paraconsistent Feature Engineering (PFE)
Support Vector Machine (SVM)
Wavelet-packet Transform (WPT)
description South american countries are the largest coffee producers in the world. Nevertheless, Cicadidae, the colloquial term for cicadas, is one of the key pests responsible for dropping the production. Currently, there is no electronic device or autonomous technological resource commercially available for detecting certain species of cicadas in the crop, penalizing the farmers on the management of that insect. Thus, this article presents a novel algorithm implemented in a low-cost real-time plataform for the acoustic detection of cicadas in plantations. Based on the Bark Scale (BS), Wavelet-packet Transform (WPT), Paraconsistent Feature Engineering (PFE) and Support Vector Machines (SVMs), the proposed technique was assessed with a database of 1366 recordings, presenting a value of accuracy of 96.41% for the distinction among cicadas and background noise, where the latter includes sounds from mechanical devices, birds, animals in general and speech, among others.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:33:37Z
2020-12-12T02:33:37Z
2020-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.compag.2020.105215
Computers and Electronics in Agriculture, v. 169.
0168-1699
http://hdl.handle.net/11449/201480
10.1016/j.compag.2020.105215
2-s2.0-85078085288
6542086226808067
0000-0002-0924-8024
url http://dx.doi.org/10.1016/j.compag.2020.105215
http://hdl.handle.net/11449/201480
identifier_str_mv Computers and Electronics in Agriculture, v. 169.
0168-1699
10.1016/j.compag.2020.105215
2-s2.0-85078085288
6542086226808067
0000-0002-0924-8024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computers and Electronics in Agriculture
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129163278680064