Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/194700 |
Resumo: | The use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach. |
id |
UNSP_c9267ed3bea9595f36f6168bc41ca096 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/194700 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural NetworksInduction MotorsNeural NetworksSystem IdentificationThe use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach.Univ Technol Parana UTFPR CP, Dept Electrotech, Maringa, Parana, BrazilState Univ Sao Paulo, Dept Elect Engn, Sao Paulo, BrazilUniv Sao Paulo, Dept Elect Engn, BR-05508 Sao Paulo, BrazilState Univ Sao Paulo, Dept Elect Engn, Sao Paulo, BrazilIeeeUniv Technol Parana UTFPR CPUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Goedlel, A.Silva, I. N.Semi, P. J. A. [UNESP]Suetake, M.IEEE2020-12-10T16:34:54Z2020-12-10T16:34:54Z2008-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject871-+2008 Ieee/pes Transmission And Distribution Conference And Exposition: Latin America, Vols 1 And 2. New York: Ieee, p. 871-+, 2008.2381-3571http://hdl.handle.net/11449/194700WOS:000263861200145Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2008 Ieee/pes Transmission And Distribution Conference And Exposition: Latin America, Vols 1 And 2info:eu-repo/semantics/openAccess2021-10-22T20:11:16Zoai:repositorio.unesp.br:11449/194700Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:02:37.334844Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks |
title |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks |
spellingShingle |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks Goedlel, A. Induction Motors Neural Networks System Identification |
title_short |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks |
title_full |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks |
title_fullStr |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks |
title_full_unstemmed |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks |
title_sort |
Estimation of Electrical Machine Speed Using Sensorless Technology and Neural Networks |
author |
Goedlel, A. |
author_facet |
Goedlel, A. Silva, I. N. Semi, P. J. A. [UNESP] Suetake, M. IEEE |
author_role |
author |
author2 |
Silva, I. N. Semi, P. J. A. [UNESP] Suetake, M. IEEE |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Univ Technol Parana UTFPR CP Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Goedlel, A. Silva, I. N. Semi, P. J. A. [UNESP] Suetake, M. IEEE |
dc.subject.por.fl_str_mv |
Induction Motors Neural Networks System Identification |
topic |
Induction Motors Neural Networks System Identification |
description |
The use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 2020-12-10T16:34:54Z 2020-12-10T16:34:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2008 Ieee/pes Transmission And Distribution Conference And Exposition: Latin America, Vols 1 And 2. New York: Ieee, p. 871-+, 2008. 2381-3571 http://hdl.handle.net/11449/194700 WOS:000263861200145 |
identifier_str_mv |
2008 Ieee/pes Transmission And Distribution Conference And Exposition: Latin America, Vols 1 And 2. New York: Ieee, p. 871-+, 2008. 2381-3571 WOS:000263861200145 |
url |
http://hdl.handle.net/11449/194700 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2008 Ieee/pes Transmission And Distribution Conference And Exposition: Latin America, Vols 1 And 2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
871-+ |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129484496306176 |