Unsupervised deep learning network for deformable fundus image registration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ICASSP43922.2022.9747686 http://hdl.handle.net/11449/240453 |
Resumo: | In ophthalmology and vision science applications, the process of registering a pair of fundus images, captured at different scales and viewing angles, is of paramount importance to support the diagnosis of diseases and routine eye examinations. Aiming at addressing the retina registration problem from the Deep Learning perspective, in this paper we introduce an end-to-end framework capable of learning the registration task in a fully unsupervised way. The designed approach combines Convolutional Neural Networks and Spatial Transformation Network into a unified pipeline that takes a similarity metric to gauge the difference between the images, thus enabling the image alignment without requiring any ground-truth data. Once the model is fully trained, it can perform one-shot registrations by just providing as input the pair of fundus images. As shown in the validation study, the trained model is able to successfully deal with several categories of fundus images, surpassing other recent techniques for retina registration. |
id |
UNSP_c9f0287e0cd23ccdc6c02398d1a19dbb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/240453 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Unsupervised deep learning network for deformable fundus image registrationDeep learningFundus image registrationIn ophthalmology and vision science applications, the process of registering a pair of fundus images, captured at different scales and viewing angles, is of paramount importance to support the diagnosis of diseases and routine eye examinations. Aiming at addressing the retina registration problem from the Deep Learning perspective, in this paper we introduce an end-to-end framework capable of learning the registration task in a fully unsupervised way. The designed approach combines Convolutional Neural Networks and Spatial Transformation Network into a unified pipeline that takes a similarity metric to gauge the difference between the images, thus enabling the image alignment without requiring any ground-truth data. Once the model is fully trained, it can perform one-shot registrations by just providing as input the pair of fundus images. As shown in the validation study, the trained model is able to successfully deal with several categories of fundus images, surpassing other recent techniques for retina registration.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University Faculty of Science and TechnologySão Paulo State University Department of Energy EngineeringSão Paulo State University Faculty of Science and TechnologySão Paulo State University Department of Energy EngineeringFAPESP: #2013/07375-0FAPESP: #2019/26288-7FAPESP: #2021/03328-3Universidade Estadual Paulista (UNESP)Benvenuto, Giovana Augusta [UNESP]Colnago, Marilaine [UNESP]Casaca, Wallace [UNESP]2023-03-01T20:17:44Z2023-03-01T20:17:44Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1281-1285application/pdfhttp://dx.doi.org/10.1109/ICASSP43922.2022.9747686ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May, p. 1281-1285.1520-6149http://hdl.handle.net/11449/24045310.1109/ICASSP43922.2022.97476862-s2.0-85134032473Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsinfo:eu-repo/semantics/openAccess2024-01-26T06:28:46Zoai:repositorio.unesp.br:11449/240453Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:00:23.537722Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Unsupervised deep learning network for deformable fundus image registration |
title |
Unsupervised deep learning network for deformable fundus image registration |
spellingShingle |
Unsupervised deep learning network for deformable fundus image registration Benvenuto, Giovana Augusta [UNESP] Deep learning Fundus image registration |
title_short |
Unsupervised deep learning network for deformable fundus image registration |
title_full |
Unsupervised deep learning network for deformable fundus image registration |
title_fullStr |
Unsupervised deep learning network for deformable fundus image registration |
title_full_unstemmed |
Unsupervised deep learning network for deformable fundus image registration |
title_sort |
Unsupervised deep learning network for deformable fundus image registration |
author |
Benvenuto, Giovana Augusta [UNESP] |
author_facet |
Benvenuto, Giovana Augusta [UNESP] Colnago, Marilaine [UNESP] Casaca, Wallace [UNESP] |
author_role |
author |
author2 |
Colnago, Marilaine [UNESP] Casaca, Wallace [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Benvenuto, Giovana Augusta [UNESP] Colnago, Marilaine [UNESP] Casaca, Wallace [UNESP] |
dc.subject.por.fl_str_mv |
Deep learning Fundus image registration |
topic |
Deep learning Fundus image registration |
description |
In ophthalmology and vision science applications, the process of registering a pair of fundus images, captured at different scales and viewing angles, is of paramount importance to support the diagnosis of diseases and routine eye examinations. Aiming at addressing the retina registration problem from the Deep Learning perspective, in this paper we introduce an end-to-end framework capable of learning the registration task in a fully unsupervised way. The designed approach combines Convolutional Neural Networks and Spatial Transformation Network into a unified pipeline that takes a similarity metric to gauge the difference between the images, thus enabling the image alignment without requiring any ground-truth data. Once the model is fully trained, it can perform one-shot registrations by just providing as input the pair of fundus images. As shown in the validation study, the trained model is able to successfully deal with several categories of fundus images, surpassing other recent techniques for retina registration. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-03-01T20:17:44Z 2023-03-01T20:17:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ICASSP43922.2022.9747686 ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May, p. 1281-1285. 1520-6149 http://hdl.handle.net/11449/240453 10.1109/ICASSP43922.2022.9747686 2-s2.0-85134032473 |
url |
http://dx.doi.org/10.1109/ICASSP43922.2022.9747686 http://hdl.handle.net/11449/240453 |
identifier_str_mv |
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May, p. 1281-1285. 1520-6149 10.1109/ICASSP43922.2022.9747686 2-s2.0-85134032473 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1281-1285 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129571457859584 |