Unsupervised deep learning network for deformable fundus image registration

Detalhes bibliográficos
Autor(a) principal: Benvenuto, Giovana Augusta [UNESP]
Data de Publicação: 2022
Outros Autores: Colnago, Marilaine [UNESP], Casaca, Wallace [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ICASSP43922.2022.9747686
http://hdl.handle.net/11449/240453
Resumo: In ophthalmology and vision science applications, the process of registering a pair of fundus images, captured at different scales and viewing angles, is of paramount importance to support the diagnosis of diseases and routine eye examinations. Aiming at addressing the retina registration problem from the Deep Learning perspective, in this paper we introduce an end-to-end framework capable of learning the registration task in a fully unsupervised way. The designed approach combines Convolutional Neural Networks and Spatial Transformation Network into a unified pipeline that takes a similarity metric to gauge the difference between the images, thus enabling the image alignment without requiring any ground-truth data. Once the model is fully trained, it can perform one-shot registrations by just providing as input the pair of fundus images. As shown in the validation study, the trained model is able to successfully deal with several categories of fundus images, surpassing other recent techniques for retina registration.
id UNSP_c9f0287e0cd23ccdc6c02398d1a19dbb
oai_identifier_str oai:repositorio.unesp.br:11449/240453
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Unsupervised deep learning network for deformable fundus image registrationDeep learningFundus image registrationIn ophthalmology and vision science applications, the process of registering a pair of fundus images, captured at different scales and viewing angles, is of paramount importance to support the diagnosis of diseases and routine eye examinations. Aiming at addressing the retina registration problem from the Deep Learning perspective, in this paper we introduce an end-to-end framework capable of learning the registration task in a fully unsupervised way. The designed approach combines Convolutional Neural Networks and Spatial Transformation Network into a unified pipeline that takes a similarity metric to gauge the difference between the images, thus enabling the image alignment without requiring any ground-truth data. Once the model is fully trained, it can perform one-shot registrations by just providing as input the pair of fundus images. As shown in the validation study, the trained model is able to successfully deal with several categories of fundus images, surpassing other recent techniques for retina registration.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University Faculty of Science and TechnologySão Paulo State University Department of Energy EngineeringSão Paulo State University Faculty of Science and TechnologySão Paulo State University Department of Energy EngineeringFAPESP: #2013/07375-0FAPESP: #2019/26288-7FAPESP: #2021/03328-3Universidade Estadual Paulista (UNESP)Benvenuto, Giovana Augusta [UNESP]Colnago, Marilaine [UNESP]Casaca, Wallace [UNESP]2023-03-01T20:17:44Z2023-03-01T20:17:44Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1281-1285application/pdfhttp://dx.doi.org/10.1109/ICASSP43922.2022.9747686ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May, p. 1281-1285.1520-6149http://hdl.handle.net/11449/24045310.1109/ICASSP43922.2022.97476862-s2.0-85134032473Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsinfo:eu-repo/semantics/openAccess2024-01-26T06:28:46Zoai:repositorio.unesp.br:11449/240453Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:00:23.537722Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Unsupervised deep learning network for deformable fundus image registration
title Unsupervised deep learning network for deformable fundus image registration
spellingShingle Unsupervised deep learning network for deformable fundus image registration
Benvenuto, Giovana Augusta [UNESP]
Deep learning
Fundus image registration
title_short Unsupervised deep learning network for deformable fundus image registration
title_full Unsupervised deep learning network for deformable fundus image registration
title_fullStr Unsupervised deep learning network for deformable fundus image registration
title_full_unstemmed Unsupervised deep learning network for deformable fundus image registration
title_sort Unsupervised deep learning network for deformable fundus image registration
author Benvenuto, Giovana Augusta [UNESP]
author_facet Benvenuto, Giovana Augusta [UNESP]
Colnago, Marilaine [UNESP]
Casaca, Wallace [UNESP]
author_role author
author2 Colnago, Marilaine [UNESP]
Casaca, Wallace [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Benvenuto, Giovana Augusta [UNESP]
Colnago, Marilaine [UNESP]
Casaca, Wallace [UNESP]
dc.subject.por.fl_str_mv Deep learning
Fundus image registration
topic Deep learning
Fundus image registration
description In ophthalmology and vision science applications, the process of registering a pair of fundus images, captured at different scales and viewing angles, is of paramount importance to support the diagnosis of diseases and routine eye examinations. Aiming at addressing the retina registration problem from the Deep Learning perspective, in this paper we introduce an end-to-end framework capable of learning the registration task in a fully unsupervised way. The designed approach combines Convolutional Neural Networks and Spatial Transformation Network into a unified pipeline that takes a similarity metric to gauge the difference between the images, thus enabling the image alignment without requiring any ground-truth data. Once the model is fully trained, it can perform one-shot registrations by just providing as input the pair of fundus images. As shown in the validation study, the trained model is able to successfully deal with several categories of fundus images, surpassing other recent techniques for retina registration.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-03-01T20:17:44Z
2023-03-01T20:17:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ICASSP43922.2022.9747686
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May, p. 1281-1285.
1520-6149
http://hdl.handle.net/11449/240453
10.1109/ICASSP43922.2022.9747686
2-s2.0-85134032473
url http://dx.doi.org/10.1109/ICASSP43922.2022.9747686
http://hdl.handle.net/11449/240453
identifier_str_mv ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May, p. 1281-1285.
1520-6149
10.1109/ICASSP43922.2022.9747686
2-s2.0-85134032473
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1281-1285
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129571457859584