Giant caloric effects close to any critical end point

Detalhes bibliográficos
Autor(a) principal: Squillante, Lucas [UNESP]
Data de Publicação: 2021
Outros Autores: Mello, Isys F. [UNESP], Seridonio, A. C. [UNESP], de Souza, Mariano [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.materresbull.2021.111413
http://hdl.handle.net/11449/207775
Resumo: The electrocaloric (EC) effect, i.e., the reversible temperature change due to adiabatic variations of the electric field, is of great interest due to its potential technological applications in refrigeration. Based on entropy arguments, we present a new framework to attain giant EC effects. Our findings are fourfold: (i) we employ the recently-proposed electric Grüneisen parameter ΓE to quantify the EC effect and discuss its advantages over the existing so-called electrocaloric strength; (ii) prediction of giant caloric effects close to any critical end point; (iii) proposal of potential key-ingredients to enhance the EC effect; (iv) demonstration of ΓE as a proper parameter to probe quantum ferroelectricity in connection with the celebrated Barrett's formula. Our findings enable us to interpret the recently-reported large EC effect at room-temperature in oxide multilayer capacitors [5], paving thus the way for new venues in the field.
id UNSP_cc1d869811679c19cdf0dfda942d2067
oai_identifier_str oai:repositorio.unesp.br:11449/207775
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Giant caloric effects close to any critical end pointCrystal structureDielectric propertiesElectronic materialsFerroelectricityMultilayersThe electrocaloric (EC) effect, i.e., the reversible temperature change due to adiabatic variations of the electric field, is of great interest due to its potential technological applications in refrigeration. Based on entropy arguments, we present a new framework to attain giant EC effects. Our findings are fourfold: (i) we employ the recently-proposed electric Grüneisen parameter ΓE to quantify the EC effect and discuss its advantages over the existing so-called electrocaloric strength; (ii) prediction of giant caloric effects close to any critical end point; (iii) proposal of potential key-ingredients to enhance the EC effect; (iv) demonstration of ΓE as a proper parameter to probe quantum ferroelectricity in connection with the celebrated Barrett's formula. Our findings enable us to interpret the recently-reported large EC effect at room-temperature in oxide multilayer capacitors [5], paving thus the way for new venues in the field.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)São Paulo State University (Unesp) IGCE – Physics DepartmentSão Paulo State University (Unesp) Department of Physics and ChemistrySão Paulo State University (Unesp) IGCE – Physics DepartmentSão Paulo State University (Unesp) Department of Physics and ChemistryFAPESP: 2011/22050-4FAPESP: 2017/07845-7FAPESP: 2019/24696-0CNPq: 302887/2020-2CNPq: 305668/2018-8Universidade Estadual Paulista (Unesp)Squillante, Lucas [UNESP]Mello, Isys F. [UNESP]Seridonio, A. C. [UNESP]de Souza, Mariano [UNESP]2021-06-25T11:00:46Z2021-06-25T11:00:46Z2021-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.materresbull.2021.111413Materials Research Bulletin, v. 142.0025-5408http://hdl.handle.net/11449/20777510.1016/j.materresbull.2021.1114132-s2.0-85106495898Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMaterials Research Bulletininfo:eu-repo/semantics/openAccess2021-10-23T17:45:59Zoai:repositorio.unesp.br:11449/207775Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:29:17.135072Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Giant caloric effects close to any critical end point
title Giant caloric effects close to any critical end point
spellingShingle Giant caloric effects close to any critical end point
Squillante, Lucas [UNESP]
Crystal structure
Dielectric properties
Electronic materials
Ferroelectricity
Multilayers
title_short Giant caloric effects close to any critical end point
title_full Giant caloric effects close to any critical end point
title_fullStr Giant caloric effects close to any critical end point
title_full_unstemmed Giant caloric effects close to any critical end point
title_sort Giant caloric effects close to any critical end point
author Squillante, Lucas [UNESP]
author_facet Squillante, Lucas [UNESP]
Mello, Isys F. [UNESP]
Seridonio, A. C. [UNESP]
de Souza, Mariano [UNESP]
author_role author
author2 Mello, Isys F. [UNESP]
Seridonio, A. C. [UNESP]
de Souza, Mariano [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Squillante, Lucas [UNESP]
Mello, Isys F. [UNESP]
Seridonio, A. C. [UNESP]
de Souza, Mariano [UNESP]
dc.subject.por.fl_str_mv Crystal structure
Dielectric properties
Electronic materials
Ferroelectricity
Multilayers
topic Crystal structure
Dielectric properties
Electronic materials
Ferroelectricity
Multilayers
description The electrocaloric (EC) effect, i.e., the reversible temperature change due to adiabatic variations of the electric field, is of great interest due to its potential technological applications in refrigeration. Based on entropy arguments, we present a new framework to attain giant EC effects. Our findings are fourfold: (i) we employ the recently-proposed electric Grüneisen parameter ΓE to quantify the EC effect and discuss its advantages over the existing so-called electrocaloric strength; (ii) prediction of giant caloric effects close to any critical end point; (iii) proposal of potential key-ingredients to enhance the EC effect; (iv) demonstration of ΓE as a proper parameter to probe quantum ferroelectricity in connection with the celebrated Barrett's formula. Our findings enable us to interpret the recently-reported large EC effect at room-temperature in oxide multilayer capacitors [5], paving thus the way for new venues in the field.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T11:00:46Z
2021-06-25T11:00:46Z
2021-10-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.materresbull.2021.111413
Materials Research Bulletin, v. 142.
0025-5408
http://hdl.handle.net/11449/207775
10.1016/j.materresbull.2021.111413
2-s2.0-85106495898
url http://dx.doi.org/10.1016/j.materresbull.2021.111413
http://hdl.handle.net/11449/207775
identifier_str_mv Materials Research Bulletin, v. 142.
0025-5408
10.1016/j.materresbull.2021.111413
2-s2.0-85106495898
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Materials Research Bulletin
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129076587659264