Pseudocapacitance phenomena and applications in biosensing devices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.electacta.2019.03.083 http://hdl.handle.net/11449/190235 |
Resumo: | The concept of electrochemical capacitance comprises both double-layer grounded capacitive (non-faradaic charging) and pseudocapacitive (faradaic charging) behaviours, as has been recently demonstrated [1–3]. In this paper, we demonstrate that nanostructured compounds possessing electrochemical capacitance can be used to design suitable interfaces for label-free biosensing applications, which, moreover, do not require a redox probe to be added to biological samples before assaying. This is possible when the capacitive transducer layer of the biosensor device is kept within an appropriate length scale (for instance, thicknesses lower than 10 nm) in which mesoscopic electrochemical properties prevail. Hence, we demonstrate how the capacitive signatures of Prussian Blue nanostructured films can be envisioned as transducer signals in biosensor devices in general, going beyond traditional redox monolayers, using aqueous electrolytes. This approach is illustrated using electroactive films made of Prussian Blue nanoparticles and modified with appropriate receptors, which successfully and specifically detected interleukin-6, a small biomarker, with a limit of detection of 5.6 ± 0.3 ng mL −1 . In summary, the application of Prussian Blue pseudocapacitive properties in label-free biosensor devices were demonstrated as a proof-of-concept of how such applications can be engineered. |
id |
UNSP_cc88437db14b34495b2d5368e5a8f42e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/190235 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Pseudocapacitance phenomena and applications in biosensing devicesElectrochemical biosensorsMolecular electrochemistryNanoscale energy-storage principlesNanostructuresPseudocapacitorsSupercapacitorsThe concept of electrochemical capacitance comprises both double-layer grounded capacitive (non-faradaic charging) and pseudocapacitive (faradaic charging) behaviours, as has been recently demonstrated [1–3]. In this paper, we demonstrate that nanostructured compounds possessing electrochemical capacitance can be used to design suitable interfaces for label-free biosensing applications, which, moreover, do not require a redox probe to be added to biological samples before assaying. This is possible when the capacitive transducer layer of the biosensor device is kept within an appropriate length scale (for instance, thicknesses lower than 10 nm) in which mesoscopic electrochemical properties prevail. Hence, we demonstrate how the capacitive signatures of Prussian Blue nanostructured films can be envisioned as transducer signals in biosensor devices in general, going beyond traditional redox monolayers, using aqueous electrolytes. This approach is illustrated using electroactive films made of Prussian Blue nanoparticles and modified with appropriate receptors, which successfully and specifically detected interleukin-6, a small biomarker, with a limit of detection of 5.6 ± 0.3 ng mL −1 . In summary, the application of Prussian Blue pseudocapacitive properties in label-free biosensor devices were demonstrated as a proof-of-concept of how such applications can be engineered.ASCRS Research FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Royal Society of ChemistryInstitute of Chemistry São Paulo State University (UNESP), São PauloInstitute of Chemistry São Paulo State University (UNESP), São PauloUniversidade Estadual Paulista (Unesp)Oliveira, Raphael M.B. [UNESP]Fernandes, Flávio C.B. [UNESP]Bueno, Paulo R. [UNESP]2019-10-06T17:06:38Z2019-10-06T17:06:38Z2019-05-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article175-184http://dx.doi.org/10.1016/j.electacta.2019.03.083Electrochimica Acta, v. 306, p. 175-184.0013-4686http://hdl.handle.net/11449/19023510.1016/j.electacta.2019.03.0832-s2.0-85063576487Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElectrochimica Actainfo:eu-repo/semantics/openAccess2021-10-23T01:35:34Zoai:repositorio.unesp.br:11449/190235Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:27:46.798017Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Pseudocapacitance phenomena and applications in biosensing devices |
title |
Pseudocapacitance phenomena and applications in biosensing devices |
spellingShingle |
Pseudocapacitance phenomena and applications in biosensing devices Oliveira, Raphael M.B. [UNESP] Electrochemical biosensors Molecular electrochemistry Nanoscale energy-storage principles Nanostructures Pseudocapacitors Supercapacitors |
title_short |
Pseudocapacitance phenomena and applications in biosensing devices |
title_full |
Pseudocapacitance phenomena and applications in biosensing devices |
title_fullStr |
Pseudocapacitance phenomena and applications in biosensing devices |
title_full_unstemmed |
Pseudocapacitance phenomena and applications in biosensing devices |
title_sort |
Pseudocapacitance phenomena and applications in biosensing devices |
author |
Oliveira, Raphael M.B. [UNESP] |
author_facet |
Oliveira, Raphael M.B. [UNESP] Fernandes, Flávio C.B. [UNESP] Bueno, Paulo R. [UNESP] |
author_role |
author |
author2 |
Fernandes, Flávio C.B. [UNESP] Bueno, Paulo R. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Oliveira, Raphael M.B. [UNESP] Fernandes, Flávio C.B. [UNESP] Bueno, Paulo R. [UNESP] |
dc.subject.por.fl_str_mv |
Electrochemical biosensors Molecular electrochemistry Nanoscale energy-storage principles Nanostructures Pseudocapacitors Supercapacitors |
topic |
Electrochemical biosensors Molecular electrochemistry Nanoscale energy-storage principles Nanostructures Pseudocapacitors Supercapacitors |
description |
The concept of electrochemical capacitance comprises both double-layer grounded capacitive (non-faradaic charging) and pseudocapacitive (faradaic charging) behaviours, as has been recently demonstrated [1–3]. In this paper, we demonstrate that nanostructured compounds possessing electrochemical capacitance can be used to design suitable interfaces for label-free biosensing applications, which, moreover, do not require a redox probe to be added to biological samples before assaying. This is possible when the capacitive transducer layer of the biosensor device is kept within an appropriate length scale (for instance, thicknesses lower than 10 nm) in which mesoscopic electrochemical properties prevail. Hence, we demonstrate how the capacitive signatures of Prussian Blue nanostructured films can be envisioned as transducer signals in biosensor devices in general, going beyond traditional redox monolayers, using aqueous electrolytes. This approach is illustrated using electroactive films made of Prussian Blue nanoparticles and modified with appropriate receptors, which successfully and specifically detected interleukin-6, a small biomarker, with a limit of detection of 5.6 ± 0.3 ng mL −1 . In summary, the application of Prussian Blue pseudocapacitive properties in label-free biosensor devices were demonstrated as a proof-of-concept of how such applications can be engineered. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T17:06:38Z 2019-10-06T17:06:38Z 2019-05-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.electacta.2019.03.083 Electrochimica Acta, v. 306, p. 175-184. 0013-4686 http://hdl.handle.net/11449/190235 10.1016/j.electacta.2019.03.083 2-s2.0-85063576487 |
url |
http://dx.doi.org/10.1016/j.electacta.2019.03.083 http://hdl.handle.net/11449/190235 |
identifier_str_mv |
Electrochimica Acta, v. 306, p. 175-184. 0013-4686 10.1016/j.electacta.2019.03.083 2-s2.0-85063576487 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Electrochimica Acta |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
175-184 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128935517487104 |