Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ISGT-LA.2019.8895486 http://hdl.handle.net/11449/198214 |
Resumo: | The prediction of electric charges is essential in the electric power system, because it establishes when and how much of generation, transmission and distribution capacity must be arranged to meet the expected load without interruptions in supply. Therefore, the more accurate, reliable and fast the results, the better quality the forecast will be. This paper proposes an approach that performs the forecast considering several points of the electricity network (multinodal forecast), where different types of consumers are considered (industrial, commercial and residential). In this problem is used an ARTMAP Fuzzy artificial neural network , that is based in the theory of resonance adaptative (ART). The main characteristic of neural networks of the ART family is the stability and plasticity that provide results quickly and accurately. In order to test the proposed forecast system, results of 24 hours (48 points) ahead are presented for nine substations of a New Zealand Electrical Company. |
id |
UNSP_695c77ab610b416d6c70c2afc435c466 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/198214 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural NetworkAggregate LoadElectrical System DistributionFuzzy ARTMAP Neural NetworkLoad ForecastingThe prediction of electric charges is essential in the electric power system, because it establishes when and how much of generation, transmission and distribution capacity must be arranged to meet the expected load without interruptions in supply. Therefore, the more accurate, reliable and fast the results, the better quality the forecast will be. This paper proposes an approach that performs the forecast considering several points of the electricity network (multinodal forecast), where different types of consumers are considered (industrial, commercial and residential). In this problem is used an ARTMAP Fuzzy artificial neural network , that is based in the theory of resonance adaptative (ART). The main characteristic of neural networks of the ART family is the stability and plasticity that provide results quickly and accurately. In order to test the proposed forecast system, results of 24 hours (48 points) ahead are presented for nine substations of a New Zealand Electrical Company.Federal Institute of Education Science and Technology Campus HortolândiaUNESP - São Paulo State UniversityUNESP - Universidade Estadual Paulista Júlio de Mesquita FilhoUNESP - São Paulo State UniversityUNESP - Universidade Estadual Paulista Júlio de Mesquita FilhoScience and TechnologyUniversidade Estadual Paulista (Unesp)Abreu, T.Moreira, J. R. [UNESP]Minussi, C. R. [UNESP]Lotufo, A. D.P. [UNESP]Lopes, M. L.M. [UNESP]2020-12-12T01:06:43Z2020-12-12T01:06:43Z2019-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ISGT-LA.2019.88954862019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019.http://hdl.handle.net/11449/19821410.1109/ISGT-LA.2019.88954862-s2.0-85075743445Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019info:eu-repo/semantics/openAccess2021-10-23T10:02:14Zoai:repositorio.unesp.br:11449/198214Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:02:00.168130Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network |
title |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network |
spellingShingle |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network Abreu, T. Aggregate Load Electrical System Distribution Fuzzy ARTMAP Neural Network Load Forecasting |
title_short |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network |
title_full |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network |
title_fullStr |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network |
title_full_unstemmed |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network |
title_sort |
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network |
author |
Abreu, T. |
author_facet |
Abreu, T. Moreira, J. R. [UNESP] Minussi, C. R. [UNESP] Lotufo, A. D.P. [UNESP] Lopes, M. L.M. [UNESP] |
author_role |
author |
author2 |
Moreira, J. R. [UNESP] Minussi, C. R. [UNESP] Lotufo, A. D.P. [UNESP] Lopes, M. L.M. [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Science and Technology Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Abreu, T. Moreira, J. R. [UNESP] Minussi, C. R. [UNESP] Lotufo, A. D.P. [UNESP] Lopes, M. L.M. [UNESP] |
dc.subject.por.fl_str_mv |
Aggregate Load Electrical System Distribution Fuzzy ARTMAP Neural Network Load Forecasting |
topic |
Aggregate Load Electrical System Distribution Fuzzy ARTMAP Neural Network Load Forecasting |
description |
The prediction of electric charges is essential in the electric power system, because it establishes when and how much of generation, transmission and distribution capacity must be arranged to meet the expected load without interruptions in supply. Therefore, the more accurate, reliable and fast the results, the better quality the forecast will be. This paper proposes an approach that performs the forecast considering several points of the electricity network (multinodal forecast), where different types of consumers are considered (industrial, commercial and residential). In this problem is used an ARTMAP Fuzzy artificial neural network , that is based in the theory of resonance adaptative (ART). The main characteristic of neural networks of the ART family is the stability and plasticity that provide results quickly and accurately. In order to test the proposed forecast system, results of 24 hours (48 points) ahead are presented for nine substations of a New Zealand Electrical Company. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-01 2020-12-12T01:06:43Z 2020-12-12T01:06:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ISGT-LA.2019.8895486 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019. http://hdl.handle.net/11449/198214 10.1109/ISGT-LA.2019.8895486 2-s2.0-85075743445 |
url |
http://dx.doi.org/10.1109/ISGT-LA.2019.8895486 http://hdl.handle.net/11449/198214 |
identifier_str_mv |
2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019. 10.1109/ISGT-LA.2019.8895486 2-s2.0-85075743445 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129151890096128 |