Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network

Detalhes bibliográficos
Autor(a) principal: Abreu, T.
Data de Publicação: 2019
Outros Autores: Moreira, J. R. [UNESP], Minussi, C. R. [UNESP], Lotufo, A. D.P. [UNESP], Lopes, M. L.M. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ISGT-LA.2019.8895486
http://hdl.handle.net/11449/198214
Resumo: The prediction of electric charges is essential in the electric power system, because it establishes when and how much of generation, transmission and distribution capacity must be arranged to meet the expected load without interruptions in supply. Therefore, the more accurate, reliable and fast the results, the better quality the forecast will be. This paper proposes an approach that performs the forecast considering several points of the electricity network (multinodal forecast), where different types of consumers are considered (industrial, commercial and residential). In this problem is used an ARTMAP Fuzzy artificial neural network , that is based in the theory of resonance adaptative (ART). The main characteristic of neural networks of the ART family is the stability and plasticity that provide results quickly and accurately. In order to test the proposed forecast system, results of 24 hours (48 points) ahead are presented for nine substations of a New Zealand Electrical Company.
id UNSP_695c77ab610b416d6c70c2afc435c466
oai_identifier_str oai:repositorio.unesp.br:11449/198214
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural NetworkAggregate LoadElectrical System DistributionFuzzy ARTMAP Neural NetworkLoad ForecastingThe prediction of electric charges is essential in the electric power system, because it establishes when and how much of generation, transmission and distribution capacity must be arranged to meet the expected load without interruptions in supply. Therefore, the more accurate, reliable and fast the results, the better quality the forecast will be. This paper proposes an approach that performs the forecast considering several points of the electricity network (multinodal forecast), where different types of consumers are considered (industrial, commercial and residential). In this problem is used an ARTMAP Fuzzy artificial neural network , that is based in the theory of resonance adaptative (ART). The main characteristic of neural networks of the ART family is the stability and plasticity that provide results quickly and accurately. In order to test the proposed forecast system, results of 24 hours (48 points) ahead are presented for nine substations of a New Zealand Electrical Company.Federal Institute of Education Science and Technology Campus HortolândiaUNESP - São Paulo State UniversityUNESP - Universidade Estadual Paulista Júlio de Mesquita FilhoUNESP - São Paulo State UniversityUNESP - Universidade Estadual Paulista Júlio de Mesquita FilhoScience and TechnologyUniversidade Estadual Paulista (Unesp)Abreu, T.Moreira, J. R. [UNESP]Minussi, C. R. [UNESP]Lotufo, A. D.P. [UNESP]Lopes, M. L.M. [UNESP]2020-12-12T01:06:43Z2020-12-12T01:06:43Z2019-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ISGT-LA.2019.88954862019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019.http://hdl.handle.net/11449/19821410.1109/ISGT-LA.2019.88954862-s2.0-85075743445Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019info:eu-repo/semantics/openAccess2021-10-23T10:02:14Zoai:repositorio.unesp.br:11449/198214Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:02:00.168130Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
title Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
spellingShingle Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
Abreu, T.
Aggregate Load
Electrical System Distribution
Fuzzy ARTMAP Neural Network
Load Forecasting
title_short Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
title_full Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
title_fullStr Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
title_full_unstemmed Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
title_sort Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network
author Abreu, T.
author_facet Abreu, T.
Moreira, J. R. [UNESP]
Minussi, C. R. [UNESP]
Lotufo, A. D.P. [UNESP]
Lopes, M. L.M. [UNESP]
author_role author
author2 Moreira, J. R. [UNESP]
Minussi, C. R. [UNESP]
Lotufo, A. D.P. [UNESP]
Lopes, M. L.M. [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Science and Technology
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Abreu, T.
Moreira, J. R. [UNESP]
Minussi, C. R. [UNESP]
Lotufo, A. D.P. [UNESP]
Lopes, M. L.M. [UNESP]
dc.subject.por.fl_str_mv Aggregate Load
Electrical System Distribution
Fuzzy ARTMAP Neural Network
Load Forecasting
topic Aggregate Load
Electrical System Distribution
Fuzzy ARTMAP Neural Network
Load Forecasting
description The prediction of electric charges is essential in the electric power system, because it establishes when and how much of generation, transmission and distribution capacity must be arranged to meet the expected load without interruptions in supply. Therefore, the more accurate, reliable and fast the results, the better quality the forecast will be. This paper proposes an approach that performs the forecast considering several points of the electricity network (multinodal forecast), where different types of consumers are considered (industrial, commercial and residential). In this problem is used an ARTMAP Fuzzy artificial neural network , that is based in the theory of resonance adaptative (ART). The main characteristic of neural networks of the ART family is the stability and plasticity that provide results quickly and accurately. In order to test the proposed forecast system, results of 24 hours (48 points) ahead are presented for nine substations of a New Zealand Electrical Company.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-01
2020-12-12T01:06:43Z
2020-12-12T01:06:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ISGT-LA.2019.8895486
2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019.
http://hdl.handle.net/11449/198214
10.1109/ISGT-LA.2019.8895486
2-s2.0-85075743445
url http://dx.doi.org/10.1109/ISGT-LA.2019.8895486
http://hdl.handle.net/11449/198214
identifier_str_mv 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019.
10.1109/ISGT-LA.2019.8895486
2-s2.0-85075743445
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129151890096128