Fast Optimum-Path Forest Classification on Graphics Processors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/184817 |
Resumo: | Some pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. |
id |
UNSP_cd0e83fae9f6aa8ed2c00acdcf339eef |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184817 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fast Optimum-Path Forest Classification on Graphics ProcessorsOptimum-Path ForestGraphics Processing UnitSome pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSouthwest Paulista Coll, Avare, SP, BrazilSao Paulo State Univ, Dept Elect Engn, Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSao Paulo State Univ, Dept Elect Engn, Bauru, SP, BrazilFAPESP: 2009/16206-1FAPESP: 2010/12697-8FAPESP: 2011/08348-0CNPq: 470571/2013-6CNPq: 303182/2011-3IeeeUniversidade Estadual Paulista (Unesp)Southwest Paulista CollRomero, Marcos V. T. [UNESP]Iwashita, Adriana S. [UNESP]Papa, Luciene P.Souza, Andre N. [UNESP]Papa, Joao P. [UNESP]Battiato, S.Braz, J.2019-10-04T12:30:16Z2019-10-04T12:30:16Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject627-631Proceedings Of The 2014 9th International Conference On Computer Vision, Theory And Applications (visapp 2014), Vol 2. New York: Ieee, p. 627-631, 2014.http://hdl.handle.net/11449/184817WOS:000412737200078Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The 2014 9th International Conference On Computer Vision, Theory And Applications (visapp 2014), Vol 2info:eu-repo/semantics/openAccess2024-06-28T13:34:43Zoai:repositorio.unesp.br:11449/184817Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:44:13.554808Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fast Optimum-Path Forest Classification on Graphics Processors |
title |
Fast Optimum-Path Forest Classification on Graphics Processors |
spellingShingle |
Fast Optimum-Path Forest Classification on Graphics Processors Romero, Marcos V. T. [UNESP] Optimum-Path Forest Graphics Processing Unit |
title_short |
Fast Optimum-Path Forest Classification on Graphics Processors |
title_full |
Fast Optimum-Path Forest Classification on Graphics Processors |
title_fullStr |
Fast Optimum-Path Forest Classification on Graphics Processors |
title_full_unstemmed |
Fast Optimum-Path Forest Classification on Graphics Processors |
title_sort |
Fast Optimum-Path Forest Classification on Graphics Processors |
author |
Romero, Marcos V. T. [UNESP] |
author_facet |
Romero, Marcos V. T. [UNESP] Iwashita, Adriana S. [UNESP] Papa, Luciene P. Souza, Andre N. [UNESP] Papa, Joao P. [UNESP] Battiato, S. Braz, J. |
author_role |
author |
author2 |
Iwashita, Adriana S. [UNESP] Papa, Luciene P. Souza, Andre N. [UNESP] Papa, Joao P. [UNESP] Battiato, S. Braz, J. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Southwest Paulista Coll |
dc.contributor.author.fl_str_mv |
Romero, Marcos V. T. [UNESP] Iwashita, Adriana S. [UNESP] Papa, Luciene P. Souza, Andre N. [UNESP] Papa, Joao P. [UNESP] Battiato, S. Braz, J. |
dc.subject.por.fl_str_mv |
Optimum-Path Forest Graphics Processing Unit |
topic |
Optimum-Path Forest Graphics Processing Unit |
description |
Some pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2019-10-04T12:30:16Z 2019-10-04T12:30:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Proceedings Of The 2014 9th International Conference On Computer Vision, Theory And Applications (visapp 2014), Vol 2. New York: Ieee, p. 627-631, 2014. http://hdl.handle.net/11449/184817 WOS:000412737200078 |
identifier_str_mv |
Proceedings Of The 2014 9th International Conference On Computer Vision, Theory And Applications (visapp 2014), Vol 2. New York: Ieee, p. 627-631, 2014. WOS:000412737200078 |
url |
http://hdl.handle.net/11449/184817 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings Of The 2014 9th International Conference On Computer Vision, Theory And Applications (visapp 2014), Vol 2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
627-631 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129352420818944 |