Fast optimum-path forest classification on graphics processors

Detalhes bibliográficos
Autor(a) principal: Romero, Marcos V.T. [UNESP]
Data de Publicação: 2014
Outros Autores: Iwashita, Adriana S. [UNESP], Papa, Luciene P., Souza, André N. [UNESP], Papa, João P. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.5220/0004740406270631
http://hdl.handle.net/11449/227858
Resumo: Some pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
id UNSP_8bc1d449ccde4e78abb882aef7df155c
oai_identifier_str oai:repositorio.unesp.br:11449/227858
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fast optimum-path forest classification on graphics processorsGraphics Processing UnitOptimum-Path ForestSome pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.Department of Computing São Paulo State University, Bauru, São PauloSouthwest Paulista College, Avaré, São PauloDepartment of Electrical Engineering São Paulo State University, Bauru, São PauloDepartment of Computing São Paulo State University, Bauru, São PauloDepartment of Electrical Engineering São Paulo State University, Bauru, São PauloUniversidade Estadual Paulista (UNESP)Southwest Paulista CollegeRomero, Marcos V.T. [UNESP]Iwashita, Adriana S. [UNESP]Papa, Luciene P.Souza, André N. [UNESP]Papa, João P. [UNESP]2022-04-29T07:20:28Z2022-04-29T07:20:28Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject627-631http://dx.doi.org/10.5220/0004740406270631VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, v. 2, p. 627-631.http://hdl.handle.net/11449/22785810.5220/00047404062706312-s2.0-84906919879Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengVISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applicationsinfo:eu-repo/semantics/openAccess2024-06-28T13:34:35Zoai:repositorio.unesp.br:11449/227858Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:07:58.792336Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fast optimum-path forest classification on graphics processors
title Fast optimum-path forest classification on graphics processors
spellingShingle Fast optimum-path forest classification on graphics processors
Romero, Marcos V.T. [UNESP]
Graphics Processing Unit
Optimum-Path Forest
title_short Fast optimum-path forest classification on graphics processors
title_full Fast optimum-path forest classification on graphics processors
title_fullStr Fast optimum-path forest classification on graphics processors
title_full_unstemmed Fast optimum-path forest classification on graphics processors
title_sort Fast optimum-path forest classification on graphics processors
author Romero, Marcos V.T. [UNESP]
author_facet Romero, Marcos V.T. [UNESP]
Iwashita, Adriana S. [UNESP]
Papa, Luciene P.
Souza, André N. [UNESP]
Papa, João P. [UNESP]
author_role author
author2 Iwashita, Adriana S. [UNESP]
Papa, Luciene P.
Souza, André N. [UNESP]
Papa, João P. [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Southwest Paulista College
dc.contributor.author.fl_str_mv Romero, Marcos V.T. [UNESP]
Iwashita, Adriana S. [UNESP]
Papa, Luciene P.
Souza, André N. [UNESP]
Papa, João P. [UNESP]
dc.subject.por.fl_str_mv Graphics Processing Unit
Optimum-Path Forest
topic Graphics Processing Unit
Optimum-Path Forest
description Some pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01
2022-04-29T07:20:28Z
2022-04-29T07:20:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5220/0004740406270631
VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, v. 2, p. 627-631.
http://hdl.handle.net/11449/227858
10.5220/0004740406270631
2-s2.0-84906919879
url http://dx.doi.org/10.5220/0004740406270631
http://hdl.handle.net/11449/227858
identifier_str_mv VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, v. 2, p. 627-631.
10.5220/0004740406270631
2-s2.0-84906919879
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 627-631
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128899098345472