Fast optimum-path forest classification on graphics processors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.5220/0004740406270631 http://hdl.handle.net/11449/227858 |
Resumo: | Some pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved. |
id |
UNSP_8bc1d449ccde4e78abb882aef7df155c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/227858 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fast optimum-path forest classification on graphics processorsGraphics Processing UnitOptimum-Path ForestSome pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.Department of Computing São Paulo State University, Bauru, São PauloSouthwest Paulista College, Avaré, São PauloDepartment of Electrical Engineering São Paulo State University, Bauru, São PauloDepartment of Computing São Paulo State University, Bauru, São PauloDepartment of Electrical Engineering São Paulo State University, Bauru, São PauloUniversidade Estadual Paulista (UNESP)Southwest Paulista CollegeRomero, Marcos V.T. [UNESP]Iwashita, Adriana S. [UNESP]Papa, Luciene P.Souza, André N. [UNESP]Papa, João P. [UNESP]2022-04-29T07:20:28Z2022-04-29T07:20:28Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject627-631http://dx.doi.org/10.5220/0004740406270631VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, v. 2, p. 627-631.http://hdl.handle.net/11449/22785810.5220/00047404062706312-s2.0-84906919879Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengVISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applicationsinfo:eu-repo/semantics/openAccess2024-06-28T13:34:35Zoai:repositorio.unesp.br:11449/227858Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:07:58.792336Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fast optimum-path forest classification on graphics processors |
title |
Fast optimum-path forest classification on graphics processors |
spellingShingle |
Fast optimum-path forest classification on graphics processors Romero, Marcos V.T. [UNESP] Graphics Processing Unit Optimum-Path Forest |
title_short |
Fast optimum-path forest classification on graphics processors |
title_full |
Fast optimum-path forest classification on graphics processors |
title_fullStr |
Fast optimum-path forest classification on graphics processors |
title_full_unstemmed |
Fast optimum-path forest classification on graphics processors |
title_sort |
Fast optimum-path forest classification on graphics processors |
author |
Romero, Marcos V.T. [UNESP] |
author_facet |
Romero, Marcos V.T. [UNESP] Iwashita, Adriana S. [UNESP] Papa, Luciene P. Souza, André N. [UNESP] Papa, João P. [UNESP] |
author_role |
author |
author2 |
Iwashita, Adriana S. [UNESP] Papa, Luciene P. Souza, André N. [UNESP] Papa, João P. [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Southwest Paulista College |
dc.contributor.author.fl_str_mv |
Romero, Marcos V.T. [UNESP] Iwashita, Adriana S. [UNESP] Papa, Luciene P. Souza, André N. [UNESP] Papa, João P. [UNESP] |
dc.subject.por.fl_str_mv |
Graphics Processing Unit Optimum-Path Forest |
topic |
Graphics Processing Unit Optimum-Path Forest |
description |
Some pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2022-04-29T07:20:28Z 2022-04-29T07:20:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5220/0004740406270631 VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, v. 2, p. 627-631. http://hdl.handle.net/11449/227858 10.5220/0004740406270631 2-s2.0-84906919879 |
url |
http://dx.doi.org/10.5220/0004740406270631 http://hdl.handle.net/11449/227858 |
identifier_str_mv |
VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, v. 2, p. 627-631. 10.5220/0004740406270631 2-s2.0-84906919879 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
627-631 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128899098345472 |