Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1088/1361-6528/ac47ce http://hdl.handle.net/11449/223385 |
Resumo: | Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect. |
id |
UNSP_d0854e0adc4b360ce63a0069ea57b350 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/223385 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dotselectrical characterizationKelvin probe force microscopy (KPFM)mesoscopic GaAs structuresunstrained quantum dotsUnstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.Sao Paulo State University (UNESP) Institute of Science and TechnologyBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM)University of Luxembourg Physics and Materials Science Research UnitUniversidade Federal de Vicosa (UFV) Departamento de FísicaEindhoven University of Technology (TU/e) Department of Applied PhysicsUniversidade Estadual de Campinas Instituto de Física 'Gleb Wataghin'Sao Paulo State University (UNESP) Institute of Science and TechnologyUniversidade Estadual Paulista (UNESP)Brazilian Center for Research in Energy and Materials (CNPEM)Physics and Materials Science Research UnitUniversidade Federal de Viçosa (UFV)Eindhoven University of Technology (TU/e)Universidade Estadual de Campinas (UNICAMP)Martin Lanzoni, Evandro [UNESP]Covre Da Silva, Saimon F.Knopper, Matthijn FlorisGarcia, Ailton JCosta, Carlos Alberto RodriguesDeneke, Christoph2022-04-28T19:50:17Z2022-04-28T19:50:17Z2022-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1361-6528/ac47ceNanotechnology, v. 33, n. 16, 2022.1361-65280957-4484http://hdl.handle.net/11449/22338510.1088/1361-6528/ac47ce2-s2.0-85123878559Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNanotechnologyinfo:eu-repo/semantics/openAccess2022-04-28T19:50:18Zoai:repositorio.unesp.br:11449/223385Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:55:59.265001Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots |
title |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots |
spellingShingle |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots Martin Lanzoni, Evandro [UNESP] electrical characterization Kelvin probe force microscopy (KPFM) mesoscopic GaAs structures unstrained quantum dots |
title_short |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots |
title_full |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots |
title_fullStr |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots |
title_full_unstemmed |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots |
title_sort |
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots |
author |
Martin Lanzoni, Evandro [UNESP] |
author_facet |
Martin Lanzoni, Evandro [UNESP] Covre Da Silva, Saimon F. Knopper, Matthijn Floris Garcia, Ailton J Costa, Carlos Alberto Rodrigues Deneke, Christoph |
author_role |
author |
author2 |
Covre Da Silva, Saimon F. Knopper, Matthijn Floris Garcia, Ailton J Costa, Carlos Alberto Rodrigues Deneke, Christoph |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Brazilian Center for Research in Energy and Materials (CNPEM) Physics and Materials Science Research Unit Universidade Federal de Viçosa (UFV) Eindhoven University of Technology (TU/e) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Martin Lanzoni, Evandro [UNESP] Covre Da Silva, Saimon F. Knopper, Matthijn Floris Garcia, Ailton J Costa, Carlos Alberto Rodrigues Deneke, Christoph |
dc.subject.por.fl_str_mv |
electrical characterization Kelvin probe force microscopy (KPFM) mesoscopic GaAs structures unstrained quantum dots |
topic |
electrical characterization Kelvin probe force microscopy (KPFM) mesoscopic GaAs structures unstrained quantum dots |
description |
Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-28T19:50:17Z 2022-04-28T19:50:17Z 2022-04-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/1361-6528/ac47ce Nanotechnology, v. 33, n. 16, 2022. 1361-6528 0957-4484 http://hdl.handle.net/11449/223385 10.1088/1361-6528/ac47ce 2-s2.0-85123878559 |
url |
http://dx.doi.org/10.1088/1361-6528/ac47ce http://hdl.handle.net/11449/223385 |
identifier_str_mv |
Nanotechnology, v. 33, n. 16, 2022. 1361-6528 0957-4484 10.1088/1361-6528/ac47ce 2-s2.0-85123878559 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nanotechnology |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128438040526848 |