Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots

Detalhes bibliográficos
Autor(a) principal: Martin Lanzoni, Evandro [UNESP]
Data de Publicação: 2022
Outros Autores: Covre Da Silva, Saimon F., Knopper, Matthijn Floris, Garcia, Ailton J, Costa, Carlos Alberto Rodrigues, Deneke, Christoph
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1361-6528/ac47ce
http://hdl.handle.net/11449/223385
Resumo: Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.
id UNSP_d0854e0adc4b360ce63a0069ea57b350
oai_identifier_str oai:repositorio.unesp.br:11449/223385
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dotselectrical characterizationKelvin probe force microscopy (KPFM)mesoscopic GaAs structuresunstrained quantum dotsUnstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.Sao Paulo State University (UNESP) Institute of Science and TechnologyBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM)University of Luxembourg Physics and Materials Science Research UnitUniversidade Federal de Vicosa (UFV) Departamento de FísicaEindhoven University of Technology (TU/e) Department of Applied PhysicsUniversidade Estadual de Campinas Instituto de Física 'Gleb Wataghin'Sao Paulo State University (UNESP) Institute of Science and TechnologyUniversidade Estadual Paulista (UNESP)Brazilian Center for Research in Energy and Materials (CNPEM)Physics and Materials Science Research UnitUniversidade Federal de Viçosa (UFV)Eindhoven University of Technology (TU/e)Universidade Estadual de Campinas (UNICAMP)Martin Lanzoni, Evandro [UNESP]Covre Da Silva, Saimon F.Knopper, Matthijn FlorisGarcia, Ailton JCosta, Carlos Alberto RodriguesDeneke, Christoph2022-04-28T19:50:17Z2022-04-28T19:50:17Z2022-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1361-6528/ac47ceNanotechnology, v. 33, n. 16, 2022.1361-65280957-4484http://hdl.handle.net/11449/22338510.1088/1361-6528/ac47ce2-s2.0-85123878559Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNanotechnologyinfo:eu-repo/semantics/openAccess2022-04-28T19:50:18Zoai:repositorio.unesp.br:11449/223385Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:55:59.265001Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
title Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
spellingShingle Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
Martin Lanzoni, Evandro [UNESP]
electrical characterization
Kelvin probe force microscopy (KPFM)
mesoscopic GaAs structures
unstrained quantum dots
title_short Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
title_full Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
title_fullStr Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
title_full_unstemmed Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
title_sort Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots
author Martin Lanzoni, Evandro [UNESP]
author_facet Martin Lanzoni, Evandro [UNESP]
Covre Da Silva, Saimon F.
Knopper, Matthijn Floris
Garcia, Ailton J
Costa, Carlos Alberto Rodrigues
Deneke, Christoph
author_role author
author2 Covre Da Silva, Saimon F.
Knopper, Matthijn Floris
Garcia, Ailton J
Costa, Carlos Alberto Rodrigues
Deneke, Christoph
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Brazilian Center for Research in Energy and Materials (CNPEM)
Physics and Materials Science Research Unit
Universidade Federal de Viçosa (UFV)
Eindhoven University of Technology (TU/e)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Martin Lanzoni, Evandro [UNESP]
Covre Da Silva, Saimon F.
Knopper, Matthijn Floris
Garcia, Ailton J
Costa, Carlos Alberto Rodrigues
Deneke, Christoph
dc.subject.por.fl_str_mv electrical characterization
Kelvin probe force microscopy (KPFM)
mesoscopic GaAs structures
unstrained quantum dots
topic electrical characterization
Kelvin probe force microscopy (KPFM)
mesoscopic GaAs structures
unstrained quantum dots
description Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k • p calculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating that k • p calculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T19:50:17Z
2022-04-28T19:50:17Z
2022-04-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1361-6528/ac47ce
Nanotechnology, v. 33, n. 16, 2022.
1361-6528
0957-4484
http://hdl.handle.net/11449/223385
10.1088/1361-6528/ac47ce
2-s2.0-85123878559
url http://dx.doi.org/10.1088/1361-6528/ac47ce
http://hdl.handle.net/11449/223385
identifier_str_mv Nanotechnology, v. 33, n. 16, 2022.
1361-6528
0957-4484
10.1088/1361-6528/ac47ce
2-s2.0-85123878559
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nanotechnology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128438040526848