Objective Measures Ensemble in Associative Classifiers

Detalhes bibliográficos
Autor(a) principal: Dall'Agnol, Maicon [UNESP]
Data de Publicação: 2020
Outros Autores: Carvalho, Veronica Oliveira de [UNESP], Filipe, J., Smialek, M., Brodsky, A., Hammoudi, S.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.5220/0009321600830090
http://hdl.handle.net/11449/210700
Resumo: Associative classifiers (ACs) are predictive models built based on association rules (ARs). Model construction occurs in steps, one of them aimed at sorting and pruning a set of rules. Regarding ordering, usually objective measures (OMs) are used to rank the rules. The aim of this work is exactly sorting. In the proposals found in the literature, the OMs are generally explored separately. The only work that explores the aggregation of measures in the context of ACs is (Silva and Carvalho, 2018), where multiple OMs are considered at the same time. To do so, (Silva and Carvalho, 2018) use the aggregation solution proposed by (Bouker et al., 2014). However, although there are many works in the context of ARs that investigate the aggregate use of OMs, all of them have some bias. Thus, this work aims to evaluate the aggregation of measures in the context of ACs considering another perspective, that of an ensemble of classifiers.
id UNSP_d17101e9f8b2b2f0736326ac226d8480
oai_identifier_str oai:repositorio.unesp.br:11449/210700
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Objective Measures Ensemble in Associative ClassifiersAssociative ClassifierInterestingness MeasuresRankingClassificationAssociation RulesAssociative classifiers (ACs) are predictive models built based on association rules (ARs). Model construction occurs in steps, one of them aimed at sorting and pruning a set of rules. Regarding ordering, usually objective measures (OMs) are used to rank the rules. The aim of this work is exactly sorting. In the proposals found in the literature, the OMs are generally explored separately. The only work that explores the aggregation of measures in the context of ACs is (Silva and Carvalho, 2018), where multiple OMs are considered at the same time. To do so, (Silva and Carvalho, 2018) use the aggregation solution proposed by (Bouker et al., 2014). However, although there are many works in the context of ARs that investigate the aggregate use of OMs, all of them have some bias. Thus, this work aims to evaluate the aggregation of measures in the context of ACs considering another perspective, that of an ensemble of classifiers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista Unesp, Inst Geociencias & Ciencias Exatas, Rio Claro, BrazilUniv Estadual Paulista Unesp, Inst Geociencias & Ciencias Exatas, Rio Claro, BrazilFAPESP: 2019/04923-2ScitepressUniversidade Estadual Paulista (Unesp)Dall'Agnol, Maicon [UNESP]Carvalho, Veronica Oliveira de [UNESP]Filipe, J.Smialek, M.Brodsky, A.Hammoudi, S.2021-06-26T02:54:20Z2021-06-26T02:54:20Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject83-90http://dx.doi.org/10.5220/0009321600830090Proceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1. Setubal: Scitepress, p. 83-90, 2020.http://hdl.handle.net/11449/21070010.5220/0009321600830090WOS:000621581300006Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1info:eu-repo/semantics/openAccess2021-10-23T22:13:49Zoai:repositorio.unesp.br:11449/210700Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:41:30.506488Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Objective Measures Ensemble in Associative Classifiers
title Objective Measures Ensemble in Associative Classifiers
spellingShingle Objective Measures Ensemble in Associative Classifiers
Dall'Agnol, Maicon [UNESP]
Associative Classifier
Interestingness Measures
Ranking
Classification
Association Rules
title_short Objective Measures Ensemble in Associative Classifiers
title_full Objective Measures Ensemble in Associative Classifiers
title_fullStr Objective Measures Ensemble in Associative Classifiers
title_full_unstemmed Objective Measures Ensemble in Associative Classifiers
title_sort Objective Measures Ensemble in Associative Classifiers
author Dall'Agnol, Maicon [UNESP]
author_facet Dall'Agnol, Maicon [UNESP]
Carvalho, Veronica Oliveira de [UNESP]
Filipe, J.
Smialek, M.
Brodsky, A.
Hammoudi, S.
author_role author
author2 Carvalho, Veronica Oliveira de [UNESP]
Filipe, J.
Smialek, M.
Brodsky, A.
Hammoudi, S.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Dall'Agnol, Maicon [UNESP]
Carvalho, Veronica Oliveira de [UNESP]
Filipe, J.
Smialek, M.
Brodsky, A.
Hammoudi, S.
dc.subject.por.fl_str_mv Associative Classifier
Interestingness Measures
Ranking
Classification
Association Rules
topic Associative Classifier
Interestingness Measures
Ranking
Classification
Association Rules
description Associative classifiers (ACs) are predictive models built based on association rules (ARs). Model construction occurs in steps, one of them aimed at sorting and pruning a set of rules. Regarding ordering, usually objective measures (OMs) are used to rank the rules. The aim of this work is exactly sorting. In the proposals found in the literature, the OMs are generally explored separately. The only work that explores the aggregation of measures in the context of ACs is (Silva and Carvalho, 2018), where multiple OMs are considered at the same time. To do so, (Silva and Carvalho, 2018) use the aggregation solution proposed by (Bouker et al., 2014). However, although there are many works in the context of ARs that investigate the aggregate use of OMs, all of them have some bias. Thus, this work aims to evaluate the aggregation of measures in the context of ACs considering another perspective, that of an ensemble of classifiers.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2021-06-26T02:54:20Z
2021-06-26T02:54:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5220/0009321600830090
Proceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1. Setubal: Scitepress, p. 83-90, 2020.
http://hdl.handle.net/11449/210700
10.5220/0009321600830090
WOS:000621581300006
url http://dx.doi.org/10.5220/0009321600830090
http://hdl.handle.net/11449/210700
identifier_str_mv Proceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1. Setubal: Scitepress, p. 83-90, 2020.
10.5220/0009321600830090
WOS:000621581300006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 83-90
dc.publisher.none.fl_str_mv Scitepress
publisher.none.fl_str_mv Scitepress
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128265961865216