Objective Measures Ensemble in Associative Classifiers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.5220/0009321600830090 http://hdl.handle.net/11449/210700 |
Resumo: | Associative classifiers (ACs) are predictive models built based on association rules (ARs). Model construction occurs in steps, one of them aimed at sorting and pruning a set of rules. Regarding ordering, usually objective measures (OMs) are used to rank the rules. The aim of this work is exactly sorting. In the proposals found in the literature, the OMs are generally explored separately. The only work that explores the aggregation of measures in the context of ACs is (Silva and Carvalho, 2018), where multiple OMs are considered at the same time. To do so, (Silva and Carvalho, 2018) use the aggregation solution proposed by (Bouker et al., 2014). However, although there are many works in the context of ARs that investigate the aggregate use of OMs, all of them have some bias. Thus, this work aims to evaluate the aggregation of measures in the context of ACs considering another perspective, that of an ensemble of classifiers. |
id |
UNSP_d17101e9f8b2b2f0736326ac226d8480 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/210700 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Objective Measures Ensemble in Associative ClassifiersAssociative ClassifierInterestingness MeasuresRankingClassificationAssociation RulesAssociative classifiers (ACs) are predictive models built based on association rules (ARs). Model construction occurs in steps, one of them aimed at sorting and pruning a set of rules. Regarding ordering, usually objective measures (OMs) are used to rank the rules. The aim of this work is exactly sorting. In the proposals found in the literature, the OMs are generally explored separately. The only work that explores the aggregation of measures in the context of ACs is (Silva and Carvalho, 2018), where multiple OMs are considered at the same time. To do so, (Silva and Carvalho, 2018) use the aggregation solution proposed by (Bouker et al., 2014). However, although there are many works in the context of ARs that investigate the aggregate use of OMs, all of them have some bias. Thus, this work aims to evaluate the aggregation of measures in the context of ACs considering another perspective, that of an ensemble of classifiers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista Unesp, Inst Geociencias & Ciencias Exatas, Rio Claro, BrazilUniv Estadual Paulista Unesp, Inst Geociencias & Ciencias Exatas, Rio Claro, BrazilFAPESP: 2019/04923-2ScitepressUniversidade Estadual Paulista (Unesp)Dall'Agnol, Maicon [UNESP]Carvalho, Veronica Oliveira de [UNESP]Filipe, J.Smialek, M.Brodsky, A.Hammoudi, S.2021-06-26T02:54:20Z2021-06-26T02:54:20Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject83-90http://dx.doi.org/10.5220/0009321600830090Proceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1. Setubal: Scitepress, p. 83-90, 2020.http://hdl.handle.net/11449/21070010.5220/0009321600830090WOS:000621581300006Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1info:eu-repo/semantics/openAccess2021-10-23T22:13:49Zoai:repositorio.unesp.br:11449/210700Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:41:30.506488Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Objective Measures Ensemble in Associative Classifiers |
title |
Objective Measures Ensemble in Associative Classifiers |
spellingShingle |
Objective Measures Ensemble in Associative Classifiers Dall'Agnol, Maicon [UNESP] Associative Classifier Interestingness Measures Ranking Classification Association Rules |
title_short |
Objective Measures Ensemble in Associative Classifiers |
title_full |
Objective Measures Ensemble in Associative Classifiers |
title_fullStr |
Objective Measures Ensemble in Associative Classifiers |
title_full_unstemmed |
Objective Measures Ensemble in Associative Classifiers |
title_sort |
Objective Measures Ensemble in Associative Classifiers |
author |
Dall'Agnol, Maicon [UNESP] |
author_facet |
Dall'Agnol, Maicon [UNESP] Carvalho, Veronica Oliveira de [UNESP] Filipe, J. Smialek, M. Brodsky, A. Hammoudi, S. |
author_role |
author |
author2 |
Carvalho, Veronica Oliveira de [UNESP] Filipe, J. Smialek, M. Brodsky, A. Hammoudi, S. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Dall'Agnol, Maicon [UNESP] Carvalho, Veronica Oliveira de [UNESP] Filipe, J. Smialek, M. Brodsky, A. Hammoudi, S. |
dc.subject.por.fl_str_mv |
Associative Classifier Interestingness Measures Ranking Classification Association Rules |
topic |
Associative Classifier Interestingness Measures Ranking Classification Association Rules |
description |
Associative classifiers (ACs) are predictive models built based on association rules (ARs). Model construction occurs in steps, one of them aimed at sorting and pruning a set of rules. Regarding ordering, usually objective measures (OMs) are used to rank the rules. The aim of this work is exactly sorting. In the proposals found in the literature, the OMs are generally explored separately. The only work that explores the aggregation of measures in the context of ACs is (Silva and Carvalho, 2018), where multiple OMs are considered at the same time. To do so, (Silva and Carvalho, 2018) use the aggregation solution proposed by (Bouker et al., 2014). However, although there are many works in the context of ARs that investigate the aggregate use of OMs, all of them have some bias. Thus, this work aims to evaluate the aggregation of measures in the context of ACs considering another perspective, that of an ensemble of classifiers. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2021-06-26T02:54:20Z 2021-06-26T02:54:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5220/0009321600830090 Proceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1. Setubal: Scitepress, p. 83-90, 2020. http://hdl.handle.net/11449/210700 10.5220/0009321600830090 WOS:000621581300006 |
url |
http://dx.doi.org/10.5220/0009321600830090 http://hdl.handle.net/11449/210700 |
identifier_str_mv |
Proceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1. Setubal: Scitepress, p. 83-90, 2020. 10.5220/0009321600830090 WOS:000621581300006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings Of The 22nd International Conference On Enterprise Information Systems (iceis), Vol 1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
83-90 |
dc.publisher.none.fl_str_mv |
Scitepress |
publisher.none.fl_str_mv |
Scitepress |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128265961865216 |