Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TLA.2020.9082724 http://hdl.handle.net/11449/195361 |
Resumo: | In this work we developed a system to identify anomalies in images from video security cameras in an urban environment. Initially people are detected in the images using Mask R-CNN. From the binary mask are extracted characteristics of the people so that the anomalies can be detected. In order to facial recognition we used Facial Landmarks so that the system knows the residents and authorized people avoiding the false anomalies. We considered four anomalies in this work: the act of jumping a wall, standing for a long time in front of the residence, walking thru the sidewalk several times and entering a place without permission. |
id |
UNSP_d4e1b76b52e6b3c190b435663839cde0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/195361 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNNMask R-CNNCNNHOGPeople characteristics extractionIntrusion detectionFacial recognitionIn this work we developed a system to identify anomalies in images from video security cameras in an urban environment. Initially people are detected in the images using Mask R-CNN. From the binary mask are extracted characteristics of the people so that the anomalies can be detected. In order to facial recognition we used Facial Landmarks so that the system knows the residents and authorized people avoiding the false anomalies. We considered four anomalies in this work: the act of jumping a wall, standing for a long time in front of the residence, walking thru the sidewalk several times and entering a place without permission.Univ Oeste Paulista Unoeste, Presidente Prudente, SP, BrazilUniv Estadual Paulista, UNESP, Presidente Prudente, SP, BrazilUniv Fortaleza Unifor, Fortaleza, Ceara, BrazilUniv Estadual Paulista, UNESP, Presidente Prudente, SP, BrazilIeee-inst Electrical Electronics Engineers IncUniv Oeste Paulista UnoesteUniversidade Estadual Paulista (Unesp)Univ Fortaleza UniforMinari, G.Silva, F.Pereira, D.Almeida, L.Pazoti, M.Artero, A. [UNESP]Albuquerque, V de2020-12-10T17:31:52Z2020-12-10T17:31:52Z2020-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article530-536http://dx.doi.org/10.1109/TLA.2020.9082724Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 18, n. 3, p. 530-536, 2020.1548-0992http://hdl.handle.net/11449/19536110.1109/TLA.2020.9082724WOS:000531332700008Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Latin America Transactionsinfo:eu-repo/semantics/openAccess2021-10-23T08:05:28Zoai:repositorio.unesp.br:11449/195361Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:35:05.736304Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN |
title |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN |
spellingShingle |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN Minari, G. Mask R-CNN CNN HOG People characteristics extraction Intrusion detection Facial recognition |
title_short |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN |
title_full |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN |
title_fullStr |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN |
title_full_unstemmed |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN |
title_sort |
Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN |
author |
Minari, G. |
author_facet |
Minari, G. Silva, F. Pereira, D. Almeida, L. Pazoti, M. Artero, A. [UNESP] Albuquerque, V de |
author_role |
author |
author2 |
Silva, F. Pereira, D. Almeida, L. Pazoti, M. Artero, A. [UNESP] Albuquerque, V de |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Univ Oeste Paulista Unoeste Universidade Estadual Paulista (Unesp) Univ Fortaleza Unifor |
dc.contributor.author.fl_str_mv |
Minari, G. Silva, F. Pereira, D. Almeida, L. Pazoti, M. Artero, A. [UNESP] Albuquerque, V de |
dc.subject.por.fl_str_mv |
Mask R-CNN CNN HOG People characteristics extraction Intrusion detection Facial recognition |
topic |
Mask R-CNN CNN HOG People characteristics extraction Intrusion detection Facial recognition |
description |
In this work we developed a system to identify anomalies in images from video security cameras in an urban environment. Initially people are detected in the images using Mask R-CNN. From the binary mask are extracted characteristics of the people so that the anomalies can be detected. In order to facial recognition we used Facial Landmarks so that the system knows the residents and authorized people avoiding the false anomalies. We considered four anomalies in this work: the act of jumping a wall, standing for a long time in front of the residence, walking thru the sidewalk several times and entering a place without permission. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-10T17:31:52Z 2020-12-10T17:31:52Z 2020-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TLA.2020.9082724 Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 18, n. 3, p. 530-536, 2020. 1548-0992 http://hdl.handle.net/11449/195361 10.1109/TLA.2020.9082724 WOS:000531332700008 |
url |
http://dx.doi.org/10.1109/TLA.2020.9082724 http://hdl.handle.net/11449/195361 |
identifier_str_mv |
Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 18, n. 3, p. 530-536, 2020. 1548-0992 10.1109/TLA.2020.9082724 WOS:000531332700008 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ieee Latin America Transactions |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
530-536 |
dc.publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129338580664320 |