Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN

Detalhes bibliográficos
Autor(a) principal: Minari, G.
Data de Publicação: 2020
Outros Autores: Silva, F., Pereira, D., Almeida, L., Pazoti, M., Artero, A. [UNESP], Albuquerque, V de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TLA.2020.9082724
http://hdl.handle.net/11449/195361
Resumo: In this work we developed a system to identify anomalies in images from video security cameras in an urban environment. Initially people are detected in the images using Mask R-CNN. From the binary mask are extracted characteristics of the people so that the anomalies can be detected. In order to facial recognition we used Facial Landmarks so that the system knows the residents and authorized people avoiding the false anomalies. We considered four anomalies in this work: the act of jumping a wall, standing for a long time in front of the residence, walking thru the sidewalk several times and entering a place without permission.
id UNSP_d4e1b76b52e6b3c190b435663839cde0
oai_identifier_str oai:repositorio.unesp.br:11449/195361
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Anomalies Identification in Images from Security Video Cameras Using Mask R-CNNMask R-CNNCNNHOGPeople characteristics extractionIntrusion detectionFacial recognitionIn this work we developed a system to identify anomalies in images from video security cameras in an urban environment. Initially people are detected in the images using Mask R-CNN. From the binary mask are extracted characteristics of the people so that the anomalies can be detected. In order to facial recognition we used Facial Landmarks so that the system knows the residents and authorized people avoiding the false anomalies. We considered four anomalies in this work: the act of jumping a wall, standing for a long time in front of the residence, walking thru the sidewalk several times and entering a place without permission.Univ Oeste Paulista Unoeste, Presidente Prudente, SP, BrazilUniv Estadual Paulista, UNESP, Presidente Prudente, SP, BrazilUniv Fortaleza Unifor, Fortaleza, Ceara, BrazilUniv Estadual Paulista, UNESP, Presidente Prudente, SP, BrazilIeee-inst Electrical Electronics Engineers IncUniv Oeste Paulista UnoesteUniversidade Estadual Paulista (Unesp)Univ Fortaleza UniforMinari, G.Silva, F.Pereira, D.Almeida, L.Pazoti, M.Artero, A. [UNESP]Albuquerque, V de2020-12-10T17:31:52Z2020-12-10T17:31:52Z2020-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article530-536http://dx.doi.org/10.1109/TLA.2020.9082724Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 18, n. 3, p. 530-536, 2020.1548-0992http://hdl.handle.net/11449/19536110.1109/TLA.2020.9082724WOS:000531332700008Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Latin America Transactionsinfo:eu-repo/semantics/openAccess2021-10-23T08:05:28Zoai:repositorio.unesp.br:11449/195361Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:35:05.736304Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
title Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
spellingShingle Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
Minari, G.
Mask R-CNN
CNN
HOG
People characteristics extraction
Intrusion detection
Facial recognition
title_short Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
title_full Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
title_fullStr Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
title_full_unstemmed Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
title_sort Anomalies Identification in Images from Security Video Cameras Using Mask R-CNN
author Minari, G.
author_facet Minari, G.
Silva, F.
Pereira, D.
Almeida, L.
Pazoti, M.
Artero, A. [UNESP]
Albuquerque, V de
author_role author
author2 Silva, F.
Pereira, D.
Almeida, L.
Pazoti, M.
Artero, A. [UNESP]
Albuquerque, V de
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Oeste Paulista Unoeste
Universidade Estadual Paulista (Unesp)
Univ Fortaleza Unifor
dc.contributor.author.fl_str_mv Minari, G.
Silva, F.
Pereira, D.
Almeida, L.
Pazoti, M.
Artero, A. [UNESP]
Albuquerque, V de
dc.subject.por.fl_str_mv Mask R-CNN
CNN
HOG
People characteristics extraction
Intrusion detection
Facial recognition
topic Mask R-CNN
CNN
HOG
People characteristics extraction
Intrusion detection
Facial recognition
description In this work we developed a system to identify anomalies in images from video security cameras in an urban environment. Initially people are detected in the images using Mask R-CNN. From the binary mask are extracted characteristics of the people so that the anomalies can be detected. In order to facial recognition we used Facial Landmarks so that the system knows the residents and authorized people avoiding the false anomalies. We considered four anomalies in this work: the act of jumping a wall, standing for a long time in front of the residence, walking thru the sidewalk several times and entering a place without permission.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10T17:31:52Z
2020-12-10T17:31:52Z
2020-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TLA.2020.9082724
Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 18, n. 3, p. 530-536, 2020.
1548-0992
http://hdl.handle.net/11449/195361
10.1109/TLA.2020.9082724
WOS:000531332700008
url http://dx.doi.org/10.1109/TLA.2020.9082724
http://hdl.handle.net/11449/195361
identifier_str_mv Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 18, n. 3, p. 530-536, 2020.
1548-0992
10.1109/TLA.2020.9082724
WOS:000531332700008
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ieee Latin America Transactions
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 530-536
dc.publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129338580664320