INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.4090/juee.2022.v16n1.045054 http://hdl.handle.net/11449/247130 |
Resumo: | Trees in urban centers can bring many benefits to population health. Each city must be responsible for the planning and management of urban forestation, but it is difficult to check if all places are properly wooded. With technological advances, there is the possibility of developing tools to help these tasks in a computational way. In this paper, we present a low-cost tree identification method that uses a Mask R-CNN deep neural network. The experiments performed presented a correct rate of 91.39% in the identification of the trees from aerial photographs obtained by drone. |
id |
UNSP_0b5af447ff6f1949361148b2b6ac2a41 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/247130 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNNAerial imagesMask R-CNNTree identificationTree segmentationTrees in urban centers can bring many benefits to population health. Each city must be responsible for the planning and management of urban forestation, but it is difficult to check if all places are properly wooded. With technological advances, there is the possibility of developing tools to help these tasks in a computational way. In this paper, we present a low-cost tree identification method that uses a Mask R-CNN deep neural network. The experiments performed presented a correct rate of 91.39% in the identification of the trees from aerial photographs obtained by drone.Department of Computer Science University of Western São Paulo (Unoeste), São PauloDepartment of Mathematics and Computer Science Faculty of Science and Technology São Paulo State University (Unesp), São PauloDepartment of Mathematics and Computer Science Faculty of Science and Technology São Paulo State University (Unesp), São PauloUniversity of Western São Paulo (Unoeste)Universidade Estadual Paulista (UNESP)Uematsu, Rafael T.Silva, Francisco A.Almeida, Leandro L.Pereira, Danillo R.Artero, Almir O. [UNESP]Piteri, Marco A. [UNESP]2023-07-29T13:07:08Z2023-07-29T13:07:08Z2022-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article45-54http://dx.doi.org/10.4090/juee.2022.v16n1.045054Journal of Urban and Environmental Engineering, v. 16, n. 1, p. 45-54, 2022.1982-3932http://hdl.handle.net/11449/24713010.4090/juee.2022.v16n1.0450542-s2.0-85151933207Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Urban and Environmental Engineeringinfo:eu-repo/semantics/openAccess2023-07-29T13:07:08Zoai:repositorio.unesp.br:11449/247130Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:21:04.422719Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN |
title |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN |
spellingShingle |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN Uematsu, Rafael T. Aerial images Mask R-CNN Tree identification Tree segmentation |
title_short |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN |
title_full |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN |
title_fullStr |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN |
title_full_unstemmed |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN |
title_sort |
INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN |
author |
Uematsu, Rafael T. |
author_facet |
Uematsu, Rafael T. Silva, Francisco A. Almeida, Leandro L. Pereira, Danillo R. Artero, Almir O. [UNESP] Piteri, Marco A. [UNESP] |
author_role |
author |
author2 |
Silva, Francisco A. Almeida, Leandro L. Pereira, Danillo R. Artero, Almir O. [UNESP] Piteri, Marco A. [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
University of Western São Paulo (Unoeste) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Uematsu, Rafael T. Silva, Francisco A. Almeida, Leandro L. Pereira, Danillo R. Artero, Almir O. [UNESP] Piteri, Marco A. [UNESP] |
dc.subject.por.fl_str_mv |
Aerial images Mask R-CNN Tree identification Tree segmentation |
topic |
Aerial images Mask R-CNN Tree identification Tree segmentation |
description |
Trees in urban centers can bring many benefits to population health. Each city must be responsible for the planning and management of urban forestation, but it is difficult to check if all places are properly wooded. With technological advances, there is the possibility of developing tools to help these tasks in a computational way. In this paper, we present a low-cost tree identification method that uses a Mask R-CNN deep neural network. The experiments performed presented a correct rate of 91.39% in the identification of the trees from aerial photographs obtained by drone. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-30 2023-07-29T13:07:08Z 2023-07-29T13:07:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.4090/juee.2022.v16n1.045054 Journal of Urban and Environmental Engineering, v. 16, n. 1, p. 45-54, 2022. 1982-3932 http://hdl.handle.net/11449/247130 10.4090/juee.2022.v16n1.045054 2-s2.0-85151933207 |
url |
http://dx.doi.org/10.4090/juee.2022.v16n1.045054 http://hdl.handle.net/11449/247130 |
identifier_str_mv |
Journal of Urban and Environmental Engineering, v. 16, n. 1, p. 45-54, 2022. 1982-3932 10.4090/juee.2022.v16n1.045054 2-s2.0-85151933207 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Urban and Environmental Engineering |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
45-54 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129509144133632 |