INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN

Detalhes bibliográficos
Autor(a) principal: Uematsu, Rafael T.
Data de Publicação: 2022
Outros Autores: Silva, Francisco A., Almeida, Leandro L., Pereira, Danillo R., Artero, Almir O. [UNESP], Piteri, Marco A. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.4090/juee.2022.v16n1.045054
http://hdl.handle.net/11449/247130
Resumo: Trees in urban centers can bring many benefits to population health. Each city must be responsible for the planning and management of urban forestation, but it is difficult to check if all places are properly wooded. With technological advances, there is the possibility of developing tools to help these tasks in a computational way. In this paper, we present a low-cost tree identification method that uses a Mask R-CNN deep neural network. The experiments performed presented a correct rate of 91.39% in the identification of the trees from aerial photographs obtained by drone.
id UNSP_0b5af447ff6f1949361148b2b6ac2a41
oai_identifier_str oai:repositorio.unesp.br:11449/247130
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNNAerial imagesMask R-CNNTree identificationTree segmentationTrees in urban centers can bring many benefits to population health. Each city must be responsible for the planning and management of urban forestation, but it is difficult to check if all places are properly wooded. With technological advances, there is the possibility of developing tools to help these tasks in a computational way. In this paper, we present a low-cost tree identification method that uses a Mask R-CNN deep neural network. The experiments performed presented a correct rate of 91.39% in the identification of the trees from aerial photographs obtained by drone.Department of Computer Science University of Western São Paulo (Unoeste), São PauloDepartment of Mathematics and Computer Science Faculty of Science and Technology São Paulo State University (Unesp), São PauloDepartment of Mathematics and Computer Science Faculty of Science and Technology São Paulo State University (Unesp), São PauloUniversity of Western São Paulo (Unoeste)Universidade Estadual Paulista (UNESP)Uematsu, Rafael T.Silva, Francisco A.Almeida, Leandro L.Pereira, Danillo R.Artero, Almir O. [UNESP]Piteri, Marco A. [UNESP]2023-07-29T13:07:08Z2023-07-29T13:07:08Z2022-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article45-54http://dx.doi.org/10.4090/juee.2022.v16n1.045054Journal of Urban and Environmental Engineering, v. 16, n. 1, p. 45-54, 2022.1982-3932http://hdl.handle.net/11449/24713010.4090/juee.2022.v16n1.0450542-s2.0-85151933207Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Urban and Environmental Engineeringinfo:eu-repo/semantics/openAccess2023-07-29T13:07:08Zoai:repositorio.unesp.br:11449/247130Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:21:04.422719Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
title INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
spellingShingle INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
Uematsu, Rafael T.
Aerial images
Mask R-CNN
Tree identification
Tree segmentation
title_short INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
title_full INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
title_fullStr INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
title_full_unstemmed INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
title_sort INDIVIDUAL TREE IDENTIFICATION IN URBAN AREAS FROM AERIAL IMAGES USING MASK R-CNN
author Uematsu, Rafael T.
author_facet Uematsu, Rafael T.
Silva, Francisco A.
Almeida, Leandro L.
Pereira, Danillo R.
Artero, Almir O. [UNESP]
Piteri, Marco A. [UNESP]
author_role author
author2 Silva, Francisco A.
Almeida, Leandro L.
Pereira, Danillo R.
Artero, Almir O. [UNESP]
Piteri, Marco A. [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv University of Western São Paulo (Unoeste)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Uematsu, Rafael T.
Silva, Francisco A.
Almeida, Leandro L.
Pereira, Danillo R.
Artero, Almir O. [UNESP]
Piteri, Marco A. [UNESP]
dc.subject.por.fl_str_mv Aerial images
Mask R-CNN
Tree identification
Tree segmentation
topic Aerial images
Mask R-CNN
Tree identification
Tree segmentation
description Trees in urban centers can bring many benefits to population health. Each city must be responsible for the planning and management of urban forestation, but it is difficult to check if all places are properly wooded. With technological advances, there is the possibility of developing tools to help these tasks in a computational way. In this paper, we present a low-cost tree identification method that uses a Mask R-CNN deep neural network. The experiments performed presented a correct rate of 91.39% in the identification of the trees from aerial photographs obtained by drone.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-30
2023-07-29T13:07:08Z
2023-07-29T13:07:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.4090/juee.2022.v16n1.045054
Journal of Urban and Environmental Engineering, v. 16, n. 1, p. 45-54, 2022.
1982-3932
http://hdl.handle.net/11449/247130
10.4090/juee.2022.v16n1.045054
2-s2.0-85151933207
url http://dx.doi.org/10.4090/juee.2022.v16n1.045054
http://hdl.handle.net/11449/247130
identifier_str_mv Journal of Urban and Environmental Engineering, v. 16, n. 1, p. 45-54, 2022.
1982-3932
10.4090/juee.2022.v16n1.045054
2-s2.0-85151933207
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Urban and Environmental Engineering
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 45-54
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129509144133632