Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer

Detalhes bibliográficos
Autor(a) principal: Clop, Eduardo M.
Data de Publicação: 2022
Outros Autores: Fraceto, Leonardo F. [UNESP], Miguel, Virginia, Gastaldi, Salomé, de Paula, Eneida, Perillo, María Angélica
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.bbamem.2022.184009
http://hdl.handle.net/11449/242133
Resumo: The interaction and location of 4-nitrophenol (PNP) in biomembranes are relevant in the bioaccumulation and potentiation of the intensive toxic effects of this persistent organic pollutant. In this work, in-silico analyses predicted that, in a fluid phospholipid bilayer, the minimum energy of the protonated (PNPH) and deprotonated (PNP−) species is located within the glycerol and choline region, respectively. This was experimentally confirmed by acid-base equilibrium experiments and theory, allowing the estimation of the mean location of PNP within a bilayer region with a dielectric constant D = 50.6 compatible with the phosphate/choline moiety of egg-yolk phosphatidylcholine unilamellar (EPC) vesicles. The comparison with the D = 43.2 value obtained in Triton X-100 micelles allow predicting a mean surface potential of ψ = 25.37 mV for the EPC-water interface. Changes in the chemical shifts and longitudinal relaxation times of EPC hydrogens by 1H NMR confirm the deeper location of the PNPH within the glycerol region and at the choline region (PNP−) at higher pH. Intermolecular PNP−EPC dipolar interactions within the choline region was also demonstrated at pH 10.2 using ROESY experiments. Additional information was obtained trough 31P NMR, that detected an increase in the anisotropy at the membrane interface after insertion of PNP which probably act as a bridge between choline moieties rigidizing the crystalline structure at that spot. Concluding, here we provide experimental support to the “pH-piston hypothesis” proposed some decades ago in the pharmaceutical field, and that reinforce the importance of the environmental conditions (e.g. pH) to modulate the bioavailability of this highly toxic pollutant.
id UNSP_d61e6a25c83b5ecc75649cf539c4de3e
oai_identifier_str oai:repositorio.unesp.br:11449/242133
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer2D ROESY1H NMR31P NMRAcid-base equilibriumP-nitrophenylphosphateThe interaction and location of 4-nitrophenol (PNP) in biomembranes are relevant in the bioaccumulation and potentiation of the intensive toxic effects of this persistent organic pollutant. In this work, in-silico analyses predicted that, in a fluid phospholipid bilayer, the minimum energy of the protonated (PNPH) and deprotonated (PNP−) species is located within the glycerol and choline region, respectively. This was experimentally confirmed by acid-base equilibrium experiments and theory, allowing the estimation of the mean location of PNP within a bilayer region with a dielectric constant D = 50.6 compatible with the phosphate/choline moiety of egg-yolk phosphatidylcholine unilamellar (EPC) vesicles. The comparison with the D = 43.2 value obtained in Triton X-100 micelles allow predicting a mean surface potential of ψ = 25.37 mV for the EPC-water interface. Changes in the chemical shifts and longitudinal relaxation times of EPC hydrogens by 1H NMR confirm the deeper location of the PNPH within the glycerol region and at the choline region (PNP−) at higher pH. Intermolecular PNP−EPC dipolar interactions within the choline region was also demonstrated at pH 10.2 using ROESY experiments. Additional information was obtained trough 31P NMR, that detected an increase in the anisotropy at the membrane interface after insertion of PNP which probably act as a bridge between choline moieties rigidizing the crystalline structure at that spot. Concluding, here we provide experimental support to the “pH-piston hypothesis” proposed some decades ago in the pharmaceutical field, and that reinforce the importance of the environmental conditions (e.g. pH) to modulate the bioavailability of this highly toxic pollutant.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Consejo Nacional de Investigaciones Científicas y TécnicasFondo para la Investigación Científica y TecnológicaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales ICTA and Departamento de Química Cátedra de Química Biológica, Av. Vélez Sársfield 1611CONICET-Universidad Nacional de Córdoba Instituto de Investigaciones Biológicas y Tecnológicas (IIByT)Depto de Engenharia Ambiental Universidade Estadual Paulista Julio de Mesquita FilhoDepto de Bioquímica e Biologia Tecidual Inst. Biologia Universidade Estadual de CampinasDepto de Engenharia Ambiental Universidade Estadual Paulista Julio de Mesquita FilhoFAPESP: 00/00362-0Consejo Nacional de Investigaciones Científicas y Técnicas: 11220200103025COFondo para la Investigación Científica y Tecnológica: 2018-4420CNPq: 304056/2009-0Cátedra de Química BiológicaInstituto de Investigaciones Biológicas y Tecnológicas (IIByT)Universidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Clop, Eduardo M.Fraceto, Leonardo F. [UNESP]Miguel, VirginiaGastaldi, Saloméde Paula, EneidaPerillo, María Angélica2023-03-02T09:48:59Z2023-03-02T09:48:59Z2022-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.bbamem.2022.184009Biochimica et Biophysica Acta - Biomembranes, v. 1864, n. 11, 2022.1879-26420005-2736http://hdl.handle.net/11449/24213310.1016/j.bbamem.2022.1840092-s2.0-85135720277Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiochimica et Biophysica Acta - Biomembranesinfo:eu-repo/semantics/openAccess2023-03-02T09:49:00Zoai:repositorio.unesp.br:11449/242133Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:29:57.566120Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer
title Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer
spellingShingle Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer
Clop, Eduardo M.
2D ROESY
1H NMR
31P NMR
Acid-base equilibrium
P-nitrophenylphosphate
title_short Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer
title_full Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer
title_fullStr Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer
title_full_unstemmed Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer
title_sort Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer
author Clop, Eduardo M.
author_facet Clop, Eduardo M.
Fraceto, Leonardo F. [UNESP]
Miguel, Virginia
Gastaldi, Salomé
de Paula, Eneida
Perillo, María Angélica
author_role author
author2 Fraceto, Leonardo F. [UNESP]
Miguel, Virginia
Gastaldi, Salomé
de Paula, Eneida
Perillo, María Angélica
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Cátedra de Química Biológica
Instituto de Investigaciones Biológicas y Tecnológicas (IIByT)
Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Clop, Eduardo M.
Fraceto, Leonardo F. [UNESP]
Miguel, Virginia
Gastaldi, Salomé
de Paula, Eneida
Perillo, María Angélica
dc.subject.por.fl_str_mv 2D ROESY
1H NMR
31P NMR
Acid-base equilibrium
P-nitrophenylphosphate
topic 2D ROESY
1H NMR
31P NMR
Acid-base equilibrium
P-nitrophenylphosphate
description The interaction and location of 4-nitrophenol (PNP) in biomembranes are relevant in the bioaccumulation and potentiation of the intensive toxic effects of this persistent organic pollutant. In this work, in-silico analyses predicted that, in a fluid phospholipid bilayer, the minimum energy of the protonated (PNPH) and deprotonated (PNP−) species is located within the glycerol and choline region, respectively. This was experimentally confirmed by acid-base equilibrium experiments and theory, allowing the estimation of the mean location of PNP within a bilayer region with a dielectric constant D = 50.6 compatible with the phosphate/choline moiety of egg-yolk phosphatidylcholine unilamellar (EPC) vesicles. The comparison with the D = 43.2 value obtained in Triton X-100 micelles allow predicting a mean surface potential of ψ = 25.37 mV for the EPC-water interface. Changes in the chemical shifts and longitudinal relaxation times of EPC hydrogens by 1H NMR confirm the deeper location of the PNPH within the glycerol region and at the choline region (PNP−) at higher pH. Intermolecular PNP−EPC dipolar interactions within the choline region was also demonstrated at pH 10.2 using ROESY experiments. Additional information was obtained trough 31P NMR, that detected an increase in the anisotropy at the membrane interface after insertion of PNP which probably act as a bridge between choline moieties rigidizing the crystalline structure at that spot. Concluding, here we provide experimental support to the “pH-piston hypothesis” proposed some decades ago in the pharmaceutical field, and that reinforce the importance of the environmental conditions (e.g. pH) to modulate the bioavailability of this highly toxic pollutant.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-01
2023-03-02T09:48:59Z
2023-03-02T09:48:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.bbamem.2022.184009
Biochimica et Biophysica Acta - Biomembranes, v. 1864, n. 11, 2022.
1879-2642
0005-2736
http://hdl.handle.net/11449/242133
10.1016/j.bbamem.2022.184009
2-s2.0-85135720277
url http://dx.doi.org/10.1016/j.bbamem.2022.184009
http://hdl.handle.net/11449/242133
identifier_str_mv Biochimica et Biophysica Acta - Biomembranes, v. 1864, n. 11, 2022.
1879-2642
0005-2736
10.1016/j.bbamem.2022.184009
2-s2.0-85135720277
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biochimica et Biophysica Acta - Biomembranes
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129210274807808