Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3389/fphar.2020.00260 http://hdl.handle.net/11449/201659 |
Resumo: | Growing evidence suggests an important role of fluoxetine with serotonin 5-HT1A and 5-HT2C receptors in the modulation of emotion and nociception in brain areas such as the amygdala and periaqueductal gray (PAG). Acute fluoxetine impairs 5-HT2C (but not 5-HT1A) receptor activation in the amygdaloid complex. Given that fluoxetine produces its clinical therapeutic effects only when given chronically, this study investigated the effects of chronic treatment with fluoxetine on the effects produced by 5-HT1A or 5-HT2C receptors activation in the amygdala or PAG on fear-induced antinociception. We recorded the effects of chronic fluoxetine on serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) levels as well as serotonin turnover; 5-HT1A and 5-HT2C receptor protein levels in the amygdala and PAG. Also, we evaluated the effects of chronic fluoxetine combined with intra-amygdala or intra-PAG injection of MK-212 (a 5-HT2C agonist; 0.63 nmol) or 8-OH-DPAT (a 5-HT1A agonist; 10 nmol) on the antinociceptive response in mice confined in the open arm of the elevated plus-maze (EPM). Nociception was assessed with the writhing test induced by intraperitoneal injection of 0.6% acetic acid. Results showed that fluoxetine (20 mg/kg, s.c.) enhanced the open-arm induced antinociception (OAA) and reduced the number of writhes in mice confined in the enclosed arm, featuring an analgesic effect. In addition, fluoxetine increased the expression of 5-HT2C receptors and 5-HT levels whereas reduced its turnover in the amygdala. While fluoxetine did not change 5-HT and 5-HIAA levels, and its turnover in the PAG, it up-regulated 5HT1A and 5-HT2C receptors in this midbrain area. Chronic fluoxetine (5.0 mg/Kg, an intrinsically inactive dose on nociception) antagonized the enhancement of OAA produced by intra-amygdala or intra-PAG injection of MK-212. Fluoxetine also impaired the attenuation of OAA induced by intra-amygdala injection of 8-OH-DPAT and totally prevented OAA in mice that received intra-PAG 8-OH-DPAT. These results suggest that (i) 5-HT may facilitate nociception and intensify OAA, acting at amygdala 5-HT1A and 5-HT2C receptors, respectively, and (ii) fluoxetine modulates the OAA through activation of 5-HT2C receptors within the PAG. These findings indicate that chronic fluoxetine impairs the effects of 5-HT1A and 5-HT2C receptors activation in the amygdala and PAG on fear-induced antinociception in mice. |
id |
UNSP_d649ceaadf0e4b64e63e2dec3768b950 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201659 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice5-HT1A and 5HT2C receptorsamygdalaantinociceptionfluoxetinemiceperiaqueductal gray matterserotoninGrowing evidence suggests an important role of fluoxetine with serotonin 5-HT1A and 5-HT2C receptors in the modulation of emotion and nociception in brain areas such as the amygdala and periaqueductal gray (PAG). Acute fluoxetine impairs 5-HT2C (but not 5-HT1A) receptor activation in the amygdaloid complex. Given that fluoxetine produces its clinical therapeutic effects only when given chronically, this study investigated the effects of chronic treatment with fluoxetine on the effects produced by 5-HT1A or 5-HT2C receptors activation in the amygdala or PAG on fear-induced antinociception. We recorded the effects of chronic fluoxetine on serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) levels as well as serotonin turnover; 5-HT1A and 5-HT2C receptor protein levels in the amygdala and PAG. Also, we evaluated the effects of chronic fluoxetine combined with intra-amygdala or intra-PAG injection of MK-212 (a 5-HT2C agonist; 0.63 nmol) or 8-OH-DPAT (a 5-HT1A agonist; 10 nmol) on the antinociceptive response in mice confined in the open arm of the elevated plus-maze (EPM). Nociception was assessed with the writhing test induced by intraperitoneal injection of 0.6% acetic acid. Results showed that fluoxetine (20 mg/kg, s.c.) enhanced the open-arm induced antinociception (OAA) and reduced the number of writhes in mice confined in the enclosed arm, featuring an analgesic effect. In addition, fluoxetine increased the expression of 5-HT2C receptors and 5-HT levels whereas reduced its turnover in the amygdala. While fluoxetine did not change 5-HT and 5-HIAA levels, and its turnover in the PAG, it up-regulated 5HT1A and 5-HT2C receptors in this midbrain area. Chronic fluoxetine (5.0 mg/Kg, an intrinsically inactive dose on nociception) antagonized the enhancement of OAA produced by intra-amygdala or intra-PAG injection of MK-212. Fluoxetine also impaired the attenuation of OAA induced by intra-amygdala injection of 8-OH-DPAT and totally prevented OAA in mice that received intra-PAG 8-OH-DPAT. These results suggest that (i) 5-HT may facilitate nociception and intensify OAA, acting at amygdala 5-HT1A and 5-HT2C receptors, respectively, and (ii) fluoxetine modulates the OAA through activation of 5-HT2C receptors within the PAG. These findings indicate that chronic fluoxetine impairs the effects of 5-HT1A and 5-HT2C receptors activation in the amygdala and PAG on fear-induced antinociception in mice.Department of Psychology Federal University of São Carlos-UFSCarJoint Graduate Program in Physiological Sciences UFSCar/UNESPInstitute of Neuroscience and Behavior, Ribeirão PretoLaboratory of Pharmacology School of Pharmaceutical Sciences Univ. Estadual Paulista – UNESPGraduate Program in Psychology UFSCarJoint Graduate Program in Physiological Sciences UFSCar/UNESPLaboratory of Pharmacology School of Pharmaceutical Sciences Univ. Estadual Paulista – UNESPUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Institute of Neuroscience and BehaviorBaptista-de-Souza, Daniela [UNESP]Tavares, Lígia Renata Rodrigues [UNESP]Furuya-da-Cunha, Elke Mayumi [UNESP]Carneiro de Oliveira, Paulo Eduardo [UNESP]Canto-de-Souza, Lucas [UNESP]Nunes-de-Souza, Ricardo Luiz [UNESP]Canto-de-Souza, Azair [UNESP]2020-12-12T02:38:27Z2020-12-12T02:38:27Z2020-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3389/fphar.2020.00260Frontiers in Pharmacology, v. 11.1663-9812http://hdl.handle.net/11449/20165910.3389/fphar.2020.002602-s2.0-85082683042Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFrontiers in Pharmacologyinfo:eu-repo/semantics/openAccess2024-06-24T14:52:03Zoai:repositorio.unesp.br:11449/201659Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:22:25.281926Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice |
title |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice |
spellingShingle |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice Baptista-de-Souza, Daniela [UNESP] 5-HT1A and 5HT2C receptors amygdala antinociception fluoxetine mice periaqueductal gray matter serotonin |
title_short |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice |
title_full |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice |
title_fullStr |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice |
title_full_unstemmed |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice |
title_sort |
Chronic Fluoxetine Impairs the Effects of 5-HT1A and 5-HT2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice |
author |
Baptista-de-Souza, Daniela [UNESP] |
author_facet |
Baptista-de-Souza, Daniela [UNESP] Tavares, Lígia Renata Rodrigues [UNESP] Furuya-da-Cunha, Elke Mayumi [UNESP] Carneiro de Oliveira, Paulo Eduardo [UNESP] Canto-de-Souza, Lucas [UNESP] Nunes-de-Souza, Ricardo Luiz [UNESP] Canto-de-Souza, Azair [UNESP] |
author_role |
author |
author2 |
Tavares, Lígia Renata Rodrigues [UNESP] Furuya-da-Cunha, Elke Mayumi [UNESP] Carneiro de Oliveira, Paulo Eduardo [UNESP] Canto-de-Souza, Lucas [UNESP] Nunes-de-Souza, Ricardo Luiz [UNESP] Canto-de-Souza, Azair [UNESP] |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) Institute of Neuroscience and Behavior |
dc.contributor.author.fl_str_mv |
Baptista-de-Souza, Daniela [UNESP] Tavares, Lígia Renata Rodrigues [UNESP] Furuya-da-Cunha, Elke Mayumi [UNESP] Carneiro de Oliveira, Paulo Eduardo [UNESP] Canto-de-Souza, Lucas [UNESP] Nunes-de-Souza, Ricardo Luiz [UNESP] Canto-de-Souza, Azair [UNESP] |
dc.subject.por.fl_str_mv |
5-HT1A and 5HT2C receptors amygdala antinociception fluoxetine mice periaqueductal gray matter serotonin |
topic |
5-HT1A and 5HT2C receptors amygdala antinociception fluoxetine mice periaqueductal gray matter serotonin |
description |
Growing evidence suggests an important role of fluoxetine with serotonin 5-HT1A and 5-HT2C receptors in the modulation of emotion and nociception in brain areas such as the amygdala and periaqueductal gray (PAG). Acute fluoxetine impairs 5-HT2C (but not 5-HT1A) receptor activation in the amygdaloid complex. Given that fluoxetine produces its clinical therapeutic effects only when given chronically, this study investigated the effects of chronic treatment with fluoxetine on the effects produced by 5-HT1A or 5-HT2C receptors activation in the amygdala or PAG on fear-induced antinociception. We recorded the effects of chronic fluoxetine on serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) levels as well as serotonin turnover; 5-HT1A and 5-HT2C receptor protein levels in the amygdala and PAG. Also, we evaluated the effects of chronic fluoxetine combined with intra-amygdala or intra-PAG injection of MK-212 (a 5-HT2C agonist; 0.63 nmol) or 8-OH-DPAT (a 5-HT1A agonist; 10 nmol) on the antinociceptive response in mice confined in the open arm of the elevated plus-maze (EPM). Nociception was assessed with the writhing test induced by intraperitoneal injection of 0.6% acetic acid. Results showed that fluoxetine (20 mg/kg, s.c.) enhanced the open-arm induced antinociception (OAA) and reduced the number of writhes in mice confined in the enclosed arm, featuring an analgesic effect. In addition, fluoxetine increased the expression of 5-HT2C receptors and 5-HT levels whereas reduced its turnover in the amygdala. While fluoxetine did not change 5-HT and 5-HIAA levels, and its turnover in the PAG, it up-regulated 5HT1A and 5-HT2C receptors in this midbrain area. Chronic fluoxetine (5.0 mg/Kg, an intrinsically inactive dose on nociception) antagonized the enhancement of OAA produced by intra-amygdala or intra-PAG injection of MK-212. Fluoxetine also impaired the attenuation of OAA induced by intra-amygdala injection of 8-OH-DPAT and totally prevented OAA in mice that received intra-PAG 8-OH-DPAT. These results suggest that (i) 5-HT may facilitate nociception and intensify OAA, acting at amygdala 5-HT1A and 5-HT2C receptors, respectively, and (ii) fluoxetine modulates the OAA through activation of 5-HT2C receptors within the PAG. These findings indicate that chronic fluoxetine impairs the effects of 5-HT1A and 5-HT2C receptors activation in the amygdala and PAG on fear-induced antinociception in mice. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:38:27Z 2020-12-12T02:38:27Z 2020-03-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3389/fphar.2020.00260 Frontiers in Pharmacology, v. 11. 1663-9812 http://hdl.handle.net/11449/201659 10.3389/fphar.2020.00260 2-s2.0-85082683042 |
url |
http://dx.doi.org/10.3389/fphar.2020.00260 http://hdl.handle.net/11449/201659 |
identifier_str_mv |
Frontiers in Pharmacology, v. 11. 1663-9812 10.3389/fphar.2020.00260 2-s2.0-85082683042 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Frontiers in Pharmacology |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129512786886656 |