Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.postharvbio.2015.08.006 http://hdl.handle.net/11449/168061 |
Resumo: | The objectives of this study was to develop partial least square (PLS) models using NIR spectroscopy for the determination of SSC and firmness in intact low chilling 'Aurora-1' peach fruit, and verify the influence of maturity stage and harvest season on the models to be developed (robustness). FT-NIR spectra were obtained as log 1/R with fruit harvested in 2013 at 3 maturity stages and in 2014. The spectra were collected on the background and blush colour skin areas of the each fruit. Model performance was evaluated based on the values of root mean square error for prediction (RMSEP) and coefficient of determination (RP 2) obtained from validation fruit set (Kennard-Stone), and prediction fruit set (2014). PCA could not group the fruit based on blush and background skin colour, maturity stages, and harvest season. The model constructed using the external validation method obtained a RMSEVE of 1.08 % with 11 latent variables (LVS) and a RVE 2 of 0.59. The prediction set, independent data, resulting in a less accurate model (RMSEP 1.04 %, Rp 2 0.45 and 11 LVS). The same trend happened for determining firmness with the external validation resulting in better model with RMSEVE 9.51N and RVE 2 of 0.40 and the prediction set with RMSEP of 13.2N, RP 2 0.40 with 7 LVS. The NIR spectroscopy showed to be a potential analytical method to determine SSC and firmness of intact low chilling 'Aurora 1' cultivar. However, it is necessary to optimize the models in other to reduce the prediction errors. |
id |
UNSP_d6638fe8919473cdee6b15ebbf08993e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/168061 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)Aurora 1ChemometricsMaturity stagesPLSPrunus persica LThe objectives of this study was to develop partial least square (PLS) models using NIR spectroscopy for the determination of SSC and firmness in intact low chilling 'Aurora-1' peach fruit, and verify the influence of maturity stage and harvest season on the models to be developed (robustness). FT-NIR spectra were obtained as log 1/R with fruit harvested in 2013 at 3 maturity stages and in 2014. The spectra were collected on the background and blush colour skin areas of the each fruit. Model performance was evaluated based on the values of root mean square error for prediction (RMSEP) and coefficient of determination (RP 2) obtained from validation fruit set (Kennard-Stone), and prediction fruit set (2014). PCA could not group the fruit based on blush and background skin colour, maturity stages, and harvest season. The model constructed using the external validation method obtained a RMSEVE of 1.08 % with 11 latent variables (LVS) and a RVE 2 of 0.59. The prediction set, independent data, resulting in a less accurate model (RMSEP 1.04 %, Rp 2 0.45 and 11 LVS). The same trend happened for determining firmness with the external validation resulting in better model with RMSEVE 9.51N and RVE 2 of 0.40 and the prediction set with RMSEP of 13.2N, RP 2 0.40 with 7 LVS. The NIR spectroscopy showed to be a potential analytical method to determine SSC and firmness of intact low chilling 'Aurora 1' cultivar. However, it is necessary to optimize the models in other to reduce the prediction errors.Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas (FCFAR), Campus de Araraquara. Rod. Araraquara- Jau, km.1 s/nUniversidade Federal de Goiás (UFG), Escola de Agronomia (EA), Setor de Horticultura, Avenida Esperança s/n - Campus UniversitarioUniversidade Estadual Paulista (UNESP), Instituto de Química (IQ), Campus de Araraquara, Rua Prof. Francisco Degni, 55Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Prof. Paulo Donato Castellane s/nUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas (FCFAR), Campus de Araraquara. Rod. Araraquara- Jau, km.1 s/nUniversidade Estadual Paulista (UNESP), Instituto de Química (IQ), Campus de Araraquara, Rua Prof. Francisco Degni, 55Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Prof. Paulo Donato Castellane s/nUniversidade Estadual Paulista (Unesp)Universidade Federal de Goiás (UFG)Nascimento, Paloma Andrade Martins [UNESP]Carvalho, Lívia Cirino de [UNESP]Júnior, Luis Carlos CunhaPereira, Fabíola Manhas Verbi [UNESP]Teixeira, Gustavo Henrique de Almeida [UNESP]2018-12-11T16:39:26Z2018-12-11T16:39:26Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article345-351application/pdfhttp://dx.doi.org/10.1016/j.postharvbio.2015.08.006Postharvest Biology and Technology, v. 111, p. 345-351.0925-5214http://hdl.handle.net/11449/16806110.1016/j.postharvbio.2015.08.0062-s2.0-849433850602-s2.0-84943385060.pdf57044454736540240000-0002-8117-2108Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPostharvest Biology and Technology1,480info:eu-repo/semantics/openAccess2023-12-27T06:23:10Zoai:repositorio.unesp.br:11449/168061Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:27:47.249089Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) |
title |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) |
spellingShingle |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) Nascimento, Paloma Andrade Martins [UNESP] Aurora 1 Chemometrics Maturity stages PLS Prunus persica L |
title_short |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) |
title_full |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) |
title_fullStr |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) |
title_full_unstemmed |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) |
title_sort |
Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) |
author |
Nascimento, Paloma Andrade Martins [UNESP] |
author_facet |
Nascimento, Paloma Andrade Martins [UNESP] Carvalho, Lívia Cirino de [UNESP] Júnior, Luis Carlos Cunha Pereira, Fabíola Manhas Verbi [UNESP] Teixeira, Gustavo Henrique de Almeida [UNESP] |
author_role |
author |
author2 |
Carvalho, Lívia Cirino de [UNESP] Júnior, Luis Carlos Cunha Pereira, Fabíola Manhas Verbi [UNESP] Teixeira, Gustavo Henrique de Almeida [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de Goiás (UFG) |
dc.contributor.author.fl_str_mv |
Nascimento, Paloma Andrade Martins [UNESP] Carvalho, Lívia Cirino de [UNESP] Júnior, Luis Carlos Cunha Pereira, Fabíola Manhas Verbi [UNESP] Teixeira, Gustavo Henrique de Almeida [UNESP] |
dc.subject.por.fl_str_mv |
Aurora 1 Chemometrics Maturity stages PLS Prunus persica L |
topic |
Aurora 1 Chemometrics Maturity stages PLS Prunus persica L |
description |
The objectives of this study was to develop partial least square (PLS) models using NIR spectroscopy for the determination of SSC and firmness in intact low chilling 'Aurora-1' peach fruit, and verify the influence of maturity stage and harvest season on the models to be developed (robustness). FT-NIR spectra were obtained as log 1/R with fruit harvested in 2013 at 3 maturity stages and in 2014. The spectra were collected on the background and blush colour skin areas of the each fruit. Model performance was evaluated based on the values of root mean square error for prediction (RMSEP) and coefficient of determination (RP 2) obtained from validation fruit set (Kennard-Stone), and prediction fruit set (2014). PCA could not group the fruit based on blush and background skin colour, maturity stages, and harvest season. The model constructed using the external validation method obtained a RMSEVE of 1.08 % with 11 latent variables (LVS) and a RVE 2 of 0.59. The prediction set, independent data, resulting in a less accurate model (RMSEP 1.04 %, Rp 2 0.45 and 11 LVS). The same trend happened for determining firmness with the external validation resulting in better model with RMSEVE 9.51N and RVE 2 of 0.40 and the prediction set with RMSEP of 13.2N, RP 2 0.40 with 7 LVS. The NIR spectroscopy showed to be a potential analytical method to determine SSC and firmness of intact low chilling 'Aurora 1' cultivar. However, it is necessary to optimize the models in other to reduce the prediction errors. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-12-11T16:39:26Z 2018-12-11T16:39:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.postharvbio.2015.08.006 Postharvest Biology and Technology, v. 111, p. 345-351. 0925-5214 http://hdl.handle.net/11449/168061 10.1016/j.postharvbio.2015.08.006 2-s2.0-84943385060 2-s2.0-84943385060.pdf 5704445473654024 0000-0002-8117-2108 |
url |
http://dx.doi.org/10.1016/j.postharvbio.2015.08.006 http://hdl.handle.net/11449/168061 |
identifier_str_mv |
Postharvest Biology and Technology, v. 111, p. 345-351. 0925-5214 10.1016/j.postharvbio.2015.08.006 2-s2.0-84943385060 2-s2.0-84943385060.pdf 5704445473654024 0000-0002-8117-2108 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Postharvest Biology and Technology 1,480 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
345-351 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129322822664192 |