Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)

Detalhes bibliográficos
Autor(a) principal: Nascimento, Paloma Andrade Martins [UNESP]
Data de Publicação: 2016
Outros Autores: Carvalho, Lívia Cirino de [UNESP], Júnior, Luis Carlos Cunha, Pereira, Fabíola Manhas Verbi [UNESP], Teixeira, Gustavo Henrique de Almeida [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.postharvbio.2015.08.006
http://hdl.handle.net/11449/168061
Resumo: The objectives of this study was to develop partial least square (PLS) models using NIR spectroscopy for the determination of SSC and firmness in intact low chilling 'Aurora-1' peach fruit, and verify the influence of maturity stage and harvest season on the models to be developed (robustness). FT-NIR spectra were obtained as log 1/R with fruit harvested in 2013 at 3 maturity stages and in 2014. The spectra were collected on the background and blush colour skin areas of the each fruit. Model performance was evaluated based on the values of root mean square error for prediction (RMSEP) and coefficient of determination (RP 2) obtained from validation fruit set (Kennard-Stone), and prediction fruit set (2014). PCA could not group the fruit based on blush and background skin colour, maturity stages, and harvest season. The model constructed using the external validation method obtained a RMSEVE of 1.08 % with 11 latent variables (LVS) and a RVE 2 of 0.59. The prediction set, independent data, resulting in a less accurate model (RMSEP 1.04 %, Rp 2 0.45 and 11 LVS). The same trend happened for determining firmness with the external validation resulting in better model with RMSEVE 9.51N and RVE 2 of 0.40 and the prediction set with RMSEP of 13.2N, RP 2 0.40 with 7 LVS. The NIR spectroscopy showed to be a potential analytical method to determine SSC and firmness of intact low chilling 'Aurora 1' cultivar. However, it is necessary to optimize the models in other to reduce the prediction errors.
id UNSP_d6638fe8919473cdee6b15ebbf08993e
oai_identifier_str oai:repositorio.unesp.br:11449/168061
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)Aurora 1ChemometricsMaturity stagesPLSPrunus persica LThe objectives of this study was to develop partial least square (PLS) models using NIR spectroscopy for the determination of SSC and firmness in intact low chilling 'Aurora-1' peach fruit, and verify the influence of maturity stage and harvest season on the models to be developed (robustness). FT-NIR spectra were obtained as log 1/R with fruit harvested in 2013 at 3 maturity stages and in 2014. The spectra were collected on the background and blush colour skin areas of the each fruit. Model performance was evaluated based on the values of root mean square error for prediction (RMSEP) and coefficient of determination (RP 2) obtained from validation fruit set (Kennard-Stone), and prediction fruit set (2014). PCA could not group the fruit based on blush and background skin colour, maturity stages, and harvest season. The model constructed using the external validation method obtained a RMSEVE of 1.08 % with 11 latent variables (LVS) and a RVE 2 of 0.59. The prediction set, independent data, resulting in a less accurate model (RMSEP 1.04 %, Rp 2 0.45 and 11 LVS). The same trend happened for determining firmness with the external validation resulting in better model with RMSEVE 9.51N and RVE 2 of 0.40 and the prediction set with RMSEP of 13.2N, RP 2 0.40 with 7 LVS. The NIR spectroscopy showed to be a potential analytical method to determine SSC and firmness of intact low chilling 'Aurora 1' cultivar. However, it is necessary to optimize the models in other to reduce the prediction errors.Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas (FCFAR), Campus de Araraquara. Rod. Araraquara- Jau, km.1 s/nUniversidade Federal de Goiás (UFG), Escola de Agronomia (EA), Setor de Horticultura, Avenida Esperança s/n - Campus UniversitarioUniversidade Estadual Paulista (UNESP), Instituto de Química (IQ), Campus de Araraquara, Rua Prof. Francisco Degni, 55Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Prof. Paulo Donato Castellane s/nUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas (FCFAR), Campus de Araraquara. Rod. Araraquara- Jau, km.1 s/nUniversidade Estadual Paulista (UNESP), Instituto de Química (IQ), Campus de Araraquara, Rua Prof. Francisco Degni, 55Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Prof. Paulo Donato Castellane s/nUniversidade Estadual Paulista (Unesp)Universidade Federal de Goiás (UFG)Nascimento, Paloma Andrade Martins [UNESP]Carvalho, Lívia Cirino de [UNESP]Júnior, Luis Carlos CunhaPereira, Fabíola Manhas Verbi [UNESP]Teixeira, Gustavo Henrique de Almeida [UNESP]2018-12-11T16:39:26Z2018-12-11T16:39:26Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article345-351application/pdfhttp://dx.doi.org/10.1016/j.postharvbio.2015.08.006Postharvest Biology and Technology, v. 111, p. 345-351.0925-5214http://hdl.handle.net/11449/16806110.1016/j.postharvbio.2015.08.0062-s2.0-849433850602-s2.0-84943385060.pdf57044454736540240000-0002-8117-2108Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPostharvest Biology and Technology1,480info:eu-repo/semantics/openAccess2023-12-27T06:23:10Zoai:repositorio.unesp.br:11449/168061Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:27:47.249089Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
title Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
spellingShingle Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
Nascimento, Paloma Andrade Martins [UNESP]
Aurora 1
Chemometrics
Maturity stages
PLS
Prunus persica L
title_short Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
title_full Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
title_fullStr Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
title_full_unstemmed Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
title_sort Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
author Nascimento, Paloma Andrade Martins [UNESP]
author_facet Nascimento, Paloma Andrade Martins [UNESP]
Carvalho, Lívia Cirino de [UNESP]
Júnior, Luis Carlos Cunha
Pereira, Fabíola Manhas Verbi [UNESP]
Teixeira, Gustavo Henrique de Almeida [UNESP]
author_role author
author2 Carvalho, Lívia Cirino de [UNESP]
Júnior, Luis Carlos Cunha
Pereira, Fabíola Manhas Verbi [UNESP]
Teixeira, Gustavo Henrique de Almeida [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de Goiás (UFG)
dc.contributor.author.fl_str_mv Nascimento, Paloma Andrade Martins [UNESP]
Carvalho, Lívia Cirino de [UNESP]
Júnior, Luis Carlos Cunha
Pereira, Fabíola Manhas Verbi [UNESP]
Teixeira, Gustavo Henrique de Almeida [UNESP]
dc.subject.por.fl_str_mv Aurora 1
Chemometrics
Maturity stages
PLS
Prunus persica L
topic Aurora 1
Chemometrics
Maturity stages
PLS
Prunus persica L
description The objectives of this study was to develop partial least square (PLS) models using NIR spectroscopy for the determination of SSC and firmness in intact low chilling 'Aurora-1' peach fruit, and verify the influence of maturity stage and harvest season on the models to be developed (robustness). FT-NIR spectra were obtained as log 1/R with fruit harvested in 2013 at 3 maturity stages and in 2014. The spectra were collected on the background and blush colour skin areas of the each fruit. Model performance was evaluated based on the values of root mean square error for prediction (RMSEP) and coefficient of determination (RP 2) obtained from validation fruit set (Kennard-Stone), and prediction fruit set (2014). PCA could not group the fruit based on blush and background skin colour, maturity stages, and harvest season. The model constructed using the external validation method obtained a RMSEVE of 1.08 % with 11 latent variables (LVS) and a RVE 2 of 0.59. The prediction set, independent data, resulting in a less accurate model (RMSEP 1.04 %, Rp 2 0.45 and 11 LVS). The same trend happened for determining firmness with the external validation resulting in better model with RMSEVE 9.51N and RVE 2 of 0.40 and the prediction set with RMSEP of 13.2N, RP 2 0.40 with 7 LVS. The NIR spectroscopy showed to be a potential analytical method to determine SSC and firmness of intact low chilling 'Aurora 1' cultivar. However, it is necessary to optimize the models in other to reduce the prediction errors.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
2018-12-11T16:39:26Z
2018-12-11T16:39:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.postharvbio.2015.08.006
Postharvest Biology and Technology, v. 111, p. 345-351.
0925-5214
http://hdl.handle.net/11449/168061
10.1016/j.postharvbio.2015.08.006
2-s2.0-84943385060
2-s2.0-84943385060.pdf
5704445473654024
0000-0002-8117-2108
url http://dx.doi.org/10.1016/j.postharvbio.2015.08.006
http://hdl.handle.net/11449/168061
identifier_str_mv Postharvest Biology and Technology, v. 111, p. 345-351.
0925-5214
10.1016/j.postharvbio.2015.08.006
2-s2.0-84943385060
2-s2.0-84943385060.pdf
5704445473654024
0000-0002-8117-2108
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Postharvest Biology and Technology
1,480
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 345-351
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129322822664192