Functional RG approach to the Potts model

Detalhes bibliográficos
Autor(a) principal: Ben Al Zinati, Riccardo
Data de Publicação: 2018
Outros Autores: Codello, Alessandro [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1742-5468/aa9dcc
http://hdl.handle.net/11449/175819
Resumo: The critical behavior of the (n + 1)-states Potts model in d-dimensions is studied with functional renormalization group techniques. We devise a general method to derive β-functions for continuous values of d and n and we write the flow equation for the effective potential (LPA) when instead n is fixed. We calculate several critical exponents, which are found to be in good agreement with Monte Carlo simulations and ϵ-expansion results available in the literature. In particular, we focus on Percolation (n → 0) and Spanning Forest (n→-1) which are the only non-trivial universality classes in d = 4,5 and where our methods converge faster.
id UNSP_dad65e8ddf96206a816d26a8fbdc6a01
oai_identifier_str oai:repositorio.unesp.br:11449/175819
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Functional RG approach to the Potts modelcritical exponents and amplitudesThe critical behavior of the (n + 1)-states Potts model in d-dimensions is studied with functional renormalization group techniques. We devise a general method to derive β-functions for continuous values of d and n and we write the flow equation for the effective potential (LPA) when instead n is fixed. We calculate several critical exponents, which are found to be in good agreement with Monte Carlo simulations and ϵ-expansion results available in the literature. In particular, we focus on Percolation (n → 0) and Spanning Forest (n→-1) which are the only non-trivial universality classes in d = 4,5 and where our methods converge faster.SISSA, via Bonomea 265INFN - Sezione di TriesteINFN - Sezione di Bologna, via Irnerio 46ICTP South American Institute for Fundamental Research IFT-UNESPICTP South American Institute for Fundamental Research IFT-UNESPSISSAINFN - Sezione di TriesteINFN - Sezione di BolognaUniversidade Estadual Paulista (Unesp)Ben Al Zinati, RiccardoCodello, Alessandro [UNESP]2018-12-11T17:17:42Z2018-12-11T17:17:42Z2018-01-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1088/1742-5468/aa9dccJournal of Statistical Mechanics: Theory and Experiment, v. 2018, n. 1, 2018.1742-5468http://hdl.handle.net/11449/17581910.1088/1742-5468/aa9dcc2-s2.0-850414148772-s2.0-85041414877.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Statistical Mechanics: Theory and Experiment0,614info:eu-repo/semantics/openAccess2023-10-04T06:01:38Zoai:repositorio.unesp.br:11449/175819Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:57:03.985676Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Functional RG approach to the Potts model
title Functional RG approach to the Potts model
spellingShingle Functional RG approach to the Potts model
Ben Al Zinati, Riccardo
critical exponents and amplitudes
title_short Functional RG approach to the Potts model
title_full Functional RG approach to the Potts model
title_fullStr Functional RG approach to the Potts model
title_full_unstemmed Functional RG approach to the Potts model
title_sort Functional RG approach to the Potts model
author Ben Al Zinati, Riccardo
author_facet Ben Al Zinati, Riccardo
Codello, Alessandro [UNESP]
author_role author
author2 Codello, Alessandro [UNESP]
author2_role author
dc.contributor.none.fl_str_mv SISSA
INFN - Sezione di Trieste
INFN - Sezione di Bologna
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ben Al Zinati, Riccardo
Codello, Alessandro [UNESP]
dc.subject.por.fl_str_mv critical exponents and amplitudes
topic critical exponents and amplitudes
description The critical behavior of the (n + 1)-states Potts model in d-dimensions is studied with functional renormalization group techniques. We devise a general method to derive β-functions for continuous values of d and n and we write the flow equation for the effective potential (LPA) when instead n is fixed. We calculate several critical exponents, which are found to be in good agreement with Monte Carlo simulations and ϵ-expansion results available in the literature. In particular, we focus on Percolation (n → 0) and Spanning Forest (n→-1) which are the only non-trivial universality classes in d = 4,5 and where our methods converge faster.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:17:42Z
2018-12-11T17:17:42Z
2018-01-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1742-5468/aa9dcc
Journal of Statistical Mechanics: Theory and Experiment, v. 2018, n. 1, 2018.
1742-5468
http://hdl.handle.net/11449/175819
10.1088/1742-5468/aa9dcc
2-s2.0-85041414877
2-s2.0-85041414877.pdf
url http://dx.doi.org/10.1088/1742-5468/aa9dcc
http://hdl.handle.net/11449/175819
identifier_str_mv Journal of Statistical Mechanics: Theory and Experiment, v. 2018, n. 1, 2018.
1742-5468
10.1088/1742-5468/aa9dcc
2-s2.0-85041414877
2-s2.0-85041414877.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Statistical Mechanics: Theory and Experiment
0,614
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128294394003456