Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.18226/23185279.v2iss1p15 http://hdl.handle.net/11449/140812 |
Resumo: | In this study, Matching Pursuit (MP) procedure is applied to the detection and analysis of EEG sleep spindles in patients evaluated for suspected OSAS. Elements having the frequency of EEG sleep spindles are selected from different dictionary sizes, with and without a frequency modulation function (chirp) for signal description. This procedure was done with high computational cost in order to find best parameters for real EEG data description. At the end we used the atom parameters as input for a decision tree-based classifier, making possible to obtain a classification according to apnea-hypopnea index group and allowing to see how atom parameters such as frequency and amplitude are affected by the presence of sleep apnea. |
id |
UNSP_dbe942ed9b15e4c1ccad21a443e86601 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/140812 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision treeEEGSignal analysisMatching pursuitObstructive apneaMachine learningDecision treeIn this study, Matching Pursuit (MP) procedure is applied to the detection and analysis of EEG sleep spindles in patients evaluated for suspected OSAS. Elements having the frequency of EEG sleep spindles are selected from different dictionary sizes, with and without a frequency modulation function (chirp) for signal description. This procedure was done with high computational cost in order to find best parameters for real EEG data description. At the end we used the atom parameters as input for a decision tree-based classifier, making possible to obtain a classification according to apnea-hypopnea index group and allowing to see how atom parameters such as frequency and amplitude are affected by the presence of sleep apnea.Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, BrasilUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências (IBB), Departamento de Física e Biofísica, Botucatu, SP, BrasilUniversidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, BrasilUniversidade Federal de Sergipe (UFS), São Cristóvão, SE, BrasilUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências (IBB), Departamento de Física e Biofísica, Botucatu, SP, BrasilUniversidade de Caxias do Sul (UCS)Universidade Estadual Paulista (Unesp)Universidade Federal do Rio Grande do Sul (UFRGS)Universidade Federal de Sergipe (UFS)Gerhardt, Günther Johannes LewczukLemke, Ney [UNESP]Carvalho, Diego ZaqueraSanta-Helena, Emerson Luis deSchönwald, Suzana VeigaDellagustin, GuilhermeRybarczyk Filho, José Luiz [UNESP]2016-07-07T12:35:32Z2016-07-07T12:35:32Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15-18application/pdfhttp://dx.doi.org/10.18226/23185279.v2iss1p15Scientia Cum Industria, v. 2, n. 1, p. 15-18, 2014.2318-5279http://hdl.handle.net/11449/14081210.18226/23185279.v2iss1p15ISSN2318-5279-2014-02-01-15-18.pdf7977035910952141Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengScientia Cum Industriainfo:eu-repo/semantics/openAccess2023-11-03T06:08:45Zoai:repositorio.unesp.br:11449/140812Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:47:42.691255Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree |
title |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree |
spellingShingle |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree Gerhardt, Günther Johannes Lewczuk EEG Signal analysis Matching pursuit Obstructive apnea Machine learning Decision tree |
title_short |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree |
title_full |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree |
title_fullStr |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree |
title_full_unstemmed |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree |
title_sort |
Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree |
author |
Gerhardt, Günther Johannes Lewczuk |
author_facet |
Gerhardt, Günther Johannes Lewczuk Lemke, Ney [UNESP] Carvalho, Diego Zaquera Santa-Helena, Emerson Luis de Schönwald, Suzana Veiga Dellagustin, Guilherme Rybarczyk Filho, José Luiz [UNESP] |
author_role |
author |
author2 |
Lemke, Ney [UNESP] Carvalho, Diego Zaquera Santa-Helena, Emerson Luis de Schönwald, Suzana Veiga Dellagustin, Guilherme Rybarczyk Filho, José Luiz [UNESP] |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de Caxias do Sul (UCS) Universidade Estadual Paulista (Unesp) Universidade Federal do Rio Grande do Sul (UFRGS) Universidade Federal de Sergipe (UFS) |
dc.contributor.author.fl_str_mv |
Gerhardt, Günther Johannes Lewczuk Lemke, Ney [UNESP] Carvalho, Diego Zaquera Santa-Helena, Emerson Luis de Schönwald, Suzana Veiga Dellagustin, Guilherme Rybarczyk Filho, José Luiz [UNESP] |
dc.subject.por.fl_str_mv |
EEG Signal analysis Matching pursuit Obstructive apnea Machine learning Decision tree |
topic |
EEG Signal analysis Matching pursuit Obstructive apnea Machine learning Decision tree |
description |
In this study, Matching Pursuit (MP) procedure is applied to the detection and analysis of EEG sleep spindles in patients evaluated for suspected OSAS. Elements having the frequency of EEG sleep spindles are selected from different dictionary sizes, with and without a frequency modulation function (chirp) for signal description. This procedure was done with high computational cost in order to find best parameters for real EEG data description. At the end we used the atom parameters as input for a decision tree-based classifier, making possible to obtain a classification according to apnea-hypopnea index group and allowing to see how atom parameters such as frequency and amplitude are affected by the presence of sleep apnea. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2016-07-07T12:35:32Z 2016-07-07T12:35:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.18226/23185279.v2iss1p15 Scientia Cum Industria, v. 2, n. 1, p. 15-18, 2014. 2318-5279 http://hdl.handle.net/11449/140812 10.18226/23185279.v2iss1p15 ISSN2318-5279-2014-02-01-15-18.pdf 7977035910952141 |
url |
http://dx.doi.org/10.18226/23185279.v2iss1p15 http://hdl.handle.net/11449/140812 |
identifier_str_mv |
Scientia Cum Industria, v. 2, n. 1, p. 15-18, 2014. 2318-5279 10.18226/23185279.v2iss1p15 ISSN2318-5279-2014-02-01-15-18.pdf 7977035910952141 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Scientia Cum Industria |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15-18 application/pdf |
dc.source.none.fl_str_mv |
Currículo Lattes reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128703064965120 |